Irrigation Crop Diversification Corporation Crop Varieties for Irrigation

The Canada-Saskatchewan Irrigation Diversification Centre (CSIDC), Outlook, Saskatchewan, is managed and funded by the federal and provincial governments, by industry and by academia. The federal contribution is provided by Agriculture and Agri-Food Canada. The provincial partner is Saskatchewan Ministry of Agriculture. Industry is represented by Irrigation Crop Diversification Corporation (ICDC) and Saskatchewan Irrigation Projects Association (SIPA). Academia is represented by University of Saskatchewan.

The goal of CSIDC is to promote economic security and sustainable rural development, primarily through diversified cropping and intensive management of irrigated cropland.

Funding for variety testing and the production of this report was provided by Irrigation Crop Diversification Corporation, Agriculture and Agri-Food Canada, Saskatchewan Ministry of Agriculture and the Canada-Saskatchewan Growing Forward 2 bi lateral agreement, Western Grains Research Foundation, Saskatchewan Pulse Growers, Saskatchewan Canola Development Commission, Canola Council of Canada, and Saskatchewan Variety Performance Group.

For more information, contact:

Garry Hnatowich, PAg

Irrigation Crop Diversification Corporation Box 1460, 901 McKenzie St. S. Outlook, SK SOL 2N0 ph. 306-867-5405

email: garry.icdc@sasktel.net

Kelly Farden, MSc, PAg

Saskatchewan Agriculture, Irrigation Branch Box 609, 410 Saskatchewan Ave. W. Outlook, SK SOL 2NO ph. 306-867-5507

email: kelly.farden@gov.sk.ca

Table of Contents

Crop	<u>Page</u>	<u>Crop</u>	<u>Page</u>
Using the Variety Guide	2	Faba Bean	14
Canola (B. napus)	4	Soybean	14
Flax	5	Corn	17
Spring Wheat	6	Annual Cereal Forage	18
Barley	9	Alfalfa	19
Field Pea	11	Timothy	20
Dry Bean	12	Perennial Forage	20

Using the Variety Guide

Introduction

The yield comparison tables are compiled from irrigated yield tests conducted by the Irrigation Crop Diversification Corp (ICDC) and the Canada-Saskatchewan Irrigation Diversification Centre (CSIDC). The data is collected from irrigated co-operative (preregistration) trials, regional yield trials, agronomic and observational trials, and producerfunded yield trials.

The trials are conducted on small replicated plots using specialized plot equipment. A high level of management is applied to eliminate differences caused by soil variability, weed pressure, and disease. The aim is to make conditions as uniform as possible so that yield differences are due to the varieties themselves, and not some other factor. The yield of small, uniform plots is generally greater than field yields; however, the relative ranking of varieties will be the same. Emphasis is placed on testing varieties with good lodging tolerance, suitable disease resistance, and ease of harvest under irrigated production.

Crop varieties respond differently from year to year. The highest yielding variety one year may be one of the lowest yielding in another year (for example, it may mature late and be at risk of frost). Choosing the highest yielding variety is no guarantee that it will give the highest during the season or on your farm. Selecting a lower ranked variety may be suitable, especially if some other characteristic, such as disease resistance or early maturity, is desired.

Interpreting the Tables

Site years

One site year is a test performed for one year at one site. A test conducted over 10 years at one site, or one year at 10 sites is equal to 10 site years in both cases. Results from less than six site years are reported only when data is limited.

Relative yield of varieties

All varieties are compared as a percent of a standard *check* variety. The check variety is included in all tests. All other varieties are compared to it. This allows comparisons from year to year, from site to site, and from test to test.

A well-run test performed over a large number of site years can detect yield differences of 2 or 3 percent. Consider four varieties that yield 108, 107, 106, and 102 percent of the check: the top three have produced comparable yields, and are higher yielding than the fourth. However, where site years are limited, varieties within 6 or 8 percent cannot be said to be different based on the available data. Further testing is needed to rank the varieties more precisely.

Lodging ratings

Lodging ratings are reported on a four-point subjective scale. The ratings are based on both numerical ratings and on general field observations throughout the growing season. Lodging varies greatly from year to year and from site to site.

Lodging ratings are subjective, based on the judgement of the researcher. The rankings by ICDC have been performed using a consistent method wherever possible. This improves the accuracy of the ranking of the varieties, but does not predict results for any given year, field, or level of management.

Interpreting the Tables (continued)

Agronomic information

Agronomic information includes plant height, days to flowering or maturity, seed size, and quality measurements. Crop height, for example, varies from year to year. Therefore, the agronomic information is useful only as a comparison between varieties. Find a variety you are familiar with and compare others to it to determine whether it is likely to be different.

Disease ratings

ICDC does not routinely collect disease ratings for each variety. **Please consult Varieties** of **Grain Crops 2018**, a Saskatchewan Ministry of Agriculture annual publication, for disease ratings of specific varieties.

A Word of Caution

Occasionally comparison with the check variety can be misleading. In some years, the check may have an exceptionally low or high yield, skewing the rankings. For example, a new variety with limited site years of data (compared to the long-term check) may rank unusually high if the check performed much worse in a specific year compared to its overall average performance over time. Further testing will even out the variability, and the ranking of the varieties will more closely reflect performance in the field.

Management practices may have a greater impact on yield than choice of variety. For example, seeding date experiments at CSIDC for irrigated flax have shown up to 20 percent yield reduction for late May seeding compared to an early May seeding date. This 20 percent spread is greater than the yield difference between flax varieties.

Plant Breeders' Rights

Plant Breeders' Rights (PBR) ensure that the private sector and institutional crop breeders are afforded reasonable control of their varieties and fair compensation for their efforts. Plant breeders may apply under the Plant Breeders' Rights Act to obtain certain controls over seed increase and seed sales of their varieties.

Sale or any other transfer of ownership of seed protected under the act is prohibited without the written permission of the breeder or the breeder's agent, and without payment of a royalty to the breeder or agent. Under PBR, bona fide farmers are allowed to keep seed of the variety for use on their own farms.

Varieties for which plant breeders' rights are in effect or have been applied for at the time of printing are identified by the symbol .

For more detailed information on specific varieties, refer to the annual Saskatchewan Ministry of Agriculture publication, *Varieties of Grain Crops, 2018*. You can find it at the following link:

https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/varieties-of-grain-crops

Canola (B. napus)

Producers should note the change in the *check* variety to 5440 in 2015. Consequently, the number of site years listed has declined. For queries on variety comparisons of older (not listed) varieties, contact Garry Hnatowich (see page 1).

Clubroot is a serious soil-borne disease of canola. Currently, there are no economical control measures that can remove the disease from infected canola fields. Sanitation and crop rotation are the most effective methods of prevention. Information about clubroot is available at the following website: www.clubroot.ca.

A number of newer registered hybrids are not yet included in the canola table due to insufficient site years of testing. However, these hybrids may have been evaluated. For inquiries about unlisted hybrids, please contact Garry Hnatowich (see page 1).

	•					
l.,	_	Site	Yield as % of	Lodging	Height	Days to
Variety	Туре	Years	5440	Rating	(cm)	Maturity
Clearfield						
VR 9560 CL	HYB	7	96	G	132	100
CS 2200 CL	HYB	7	95	VG	127	100
45H73	HYB	12	94	G	125	99
5525 CL	HYB	18	92	G	130	99
45P70	HYB	12	84	G	119	99
Liberty Link						
L252	HYB	13	105	G	124	99
SY4135	HYB	4**	103	F	119	99
L140P	HYB	4**	103	G	125	99
L261	HYB	7	100	VG	138	100
5440	HYB	30	100	VG	129	99
L150	HYB	9	98	G	129	99
L130	HYB	15	97	VG	126	99
Roundup Read	у					
6074RR	HYB	7	101	VG	125	101
45H29	HYB	19	99	G	133	98
CS 2000	HYB	10	98	G	132	100
45H26	HYB	11	97	G	124	99
CS 2100	HYB	8	97	G	122	100
83S01 RR	COM	4**	97	G	131	99
6060 RR	HYB	12	96	G	130	101
Canterra 1990	HYB	11	96	G	124	99
VR 9562 GC	HYB	6	96	VG	131	99
45H28	HYB	10	95	G	129	99
46P50	HYB	12	93	G	127	100
73-75 RR	HYB	5	93	F	115	98
45H31	HYB	7	92	VG	131	99
PT 530 G	HYB	4**	92	VG	130	98
V12-1*	HYB	11	91	G	127	100
D3150	HYB	11	91	G	128	99
Canterra 1970	HYB	8	91	G	128	100
72-55 RR	HYB	4**	91	G	119	98
SY4114	HYB	4**	91	F	117	98
45H21	HYB	30	90	G	122	99
VR 9553 G	HYB	9	90	G	126	99
V12-2*	HYB	4**	90	G	124	101
71-45 RR	HYB	12	89	F	120	97
6040 RR	HYB	11	89	G	128	100
4424 RR	HYB	5	89	G	132	100
45S51	HYB	9	87	G	125	97
45S52	HYB	6	86	G	124	98

Average plot yield of 5440 (check): 5,268 kg/ha (93.9 bu/ac) Lodging: F = fair; G = good; VG = very good HYB = Hybrid; COM = Composite Hybrid; OP = Open Pollinated

^{*} Specialty oil profile

^{**} Limited site years, caution should be used and other information sources sought.

Flax

All flax varieties are immune to rust.

Frozen flax straw should be analyzed by a feed-testing laboratory to confirm that it is free of prussic acid before using it as a livestock feed.

		Yield			
Variety	Site Years	as % of CDC Bethune	Lodging Rating	Days to Maturity	Height (cm)
WestLin 71 🐵	9	103	G	116	61
WestLin 72 🕲	7	103	G	118	63
CDC Neela 🕲	8	102	G	114	66
Prairie Sapphire 🏻 🏵	13	101	G	114	66
VT50 ⊗	7	101	G	119	59
CDC Bethune 🙆	30	100	G	113	66
Prairie Thunder 🕲	22	100	G	113	63
CDC Glas 🕲	9	99	G	115	66
AAC Bravo 🕲	7	96	G	116	64
Prairie Blue 🕲	30	95	G	116	67
Prairie Grande 🕲	19	94	G	112	60
CDC Sorrel 🙆	24	93	F	114	71
AC Watson 🕲	18	92	G	113	60
CDC Sanctuary 🔞	13	88	F	113	70
Vimy	17	83	Р	113	65
CDC Buryu 🙆	5	79	G	115	67

Average plot yield of CDC Bethune (check): 3,120 kg/ha (49.7 bu/ac)

PBR in effect

Lodging: P = poor; F = fair; G = good; VG = very good

Spring Wheat

Producers are strongly encouraged to use a combination of the Canadian Food Inspection Agency's List of Registered Varieties at:

http://www.inspection.gc.ca/plants/variety-registration/registered-varieties-and-notifications/eng/1300109081286/1300109176745

and the Canadian Grains Commission's Variety Designation Lists at:

http://www.grainscanada.gc.ca/legislation-legislation/orders-arretes/ocgcm-maccg-eng.htm to determine the registration and grade eligibility status of varieties.

Canada Western Red Spring

AAC Cameron VB, Goodeve VB, AAC Prevail VB, Shaw VB, Unity VB, CDC Utmost VB and Vesper VB are CWRS wheat midge tolerant varieties. They contain the *SM1* tolerant gene. To manage against the build-up of midge resistance to the gene, an *interspersed refuge* is used commercially. These varieties are not immune to wheat midge and can suffer midge damage when high midge infestation levels occur. More information on midge tolerant wheat cultivars and interspersed refuge can be found at http://www.midgetolerantwheat.ca/farmers/faq.aspx.

CDC Thrive, 5605HR CL, and WR859CL are tolerant to the CLEARFIELD® herbicides Adrenalin SC and Altitude FX.

Unity VB will be moving to the CNHR class as of August 1, 2018.

Canada Western Amber Durum

CDC Carbide VB and **CDC Marchwell VB** are wheat midge tolerant. **AAC Cabri, CDC Fortitude** and **AAC Raymore** have a solid stem and are resistant to the wheat stem sawfly.

Durum wheat varieties are generally more susceptible than CWRS varieties to Fusarium Head Blight. All durum varieties are susceptible to two new races of loose smut.

Canada Prairie Spring Red

Conquer VB and **AAC Foray VB** are CPS-red midge tolerant varieties using the same **SM1** gene as in the CWRS varieties and will be marketed with an interspersed refuge.

Conquer VB will be moving to the CNHR class as of August 1, 2018.

Canada Western Special Purpose

Varieties in the Special Purpose market class have no defined quality attributes and may have specific enduses. Most varieties are intended for ethanol and livestock feed purposes. Producers are encouraged to contact the variety distributor or developer regarding uses of these varieties.

Canada Western Soft White Spring

AAC Chiffon VB and AAC Indus VB are CWSWS midge tolerant varieties using the same **SM1** gene as in the CWRS varieties and will be marketed with an interspersed refuge.

Soft white spring wheat may be used as a feedstock in the production of ethanol. Soft white spring wheat varieties are susceptible to pre-harvest sprouting. The leaf spot pathogens that affect other wheat classes also affect soft white cultivars and therefore, recommendations for leaf spot control are similar.

Irrigated areas in Saskatchewan are susceptible to fusarium infestations. Sow less susceptible cereal types and varieties on irrigated fields with a history of fusarium head blight. Use fusarium tested seed to prevent new infestations of irrigated land. Durum are the most susceptible wheat types followed by CWSWS, CPSR, and CWRS. Information on tolerance levels in wheat varieties is available in the Saskatchewan Ministry of Agriculture annual publication: *Varieties of Grain Crops, 2018*.

Spring Wheat

			•			2/ 5	
	C't-	Yield	t a data a		D	% Protein	11 1 0
Maniatu	Site	as % of	Lodging	Height	Days to	+/-	Head Awns
Variety	Years	Carberry	Rating	(cm)	Maturity	Carberry	Present
Canada Western Red		442		0.4	00	.0.0	
Goodeve VB®	11	113	VG	94	98	+0.2	N Y
Unity VB 🔞 5605HR CL 🕲	11	113	F	95	96 101	+0.2	Υ Υ
CDC Utmost VB	5	112	G F	99	101	+0.5	•
Vesper VB	16 9	108 107	F	94 92	98 98	+0.2 +0.3	N Y
WR859CL	9 15	107	r G	92 87	98 97	+0.5	Υ
CDC Stanley 🕲	12	106	G	93	97 99	+0.5 +0.5	Y N
Glenn 🕲	12 17	105	VG	93 91	99 101	+0.5	Y
Stettler	17		G	91	98	+0.1	Υ
AAC Brandon 🔞	15 9	105 105	VG	92 82	98 99	+1.2 -0.2	Ϋ́Υ
CDC VR Morris	6	105	VG F	94	99	-0.2 +0.6	r N
AAC Cameron VB	5	105	F	94 100	99	+0.6 -0.1	Y
Muchmore @	16	103	г VG	80	99 98	-0.1 -0.4	Υ
5603HR 🕸	10	103	VG F	96	98	+0.3	Υ
Cardale 🕲	8	103	G	87	96	+-0.2	Y
Shaw VB	16	103	G	99	97	+0.3	N
CDC Titanium VB	_		F		_		Y
Carberry (a)	6	102	VG	93	97	+1.1 15.1%	Y Y
AAC Redwater	19 7	100 99	VG	84 86	101 95	+0.6	Y
AAC Redwater &	6	99	VG F	101	95 101	+0.6	r N
Thorsby	5	99	G	99	99	0.0	N
AAC Elie		97	VG	81	100	0.0	Y
AC Barrie	, 19	96	G	95	98	+0.8	, N
Waskada 🕲	6	93	F	98	95	+1.2	Y
5602HR 🕸	5	93	G	92	93 97	+1.0	Y
CDC Plentiful 🕲	6	93 92	F	92	97 97	+0.1	N
AAC Connery	5	92	, VG	87	98	+0.7	N
Canada Western Amb	_	_		- 07	30	10.7	14
۸		134	F	95	102	0.2	Υ
AAC Congress 🕲	6	_	-		103	-0.3	•
CDC Dynamic 🕲	6	132	G	97	101	+0.3	Υ
CDC Precision	9	125	F	95	103	-0.3	Υ
AAC Durafield 🕲	7	125	F	94	102	+0.3	Υ
CDC Alloy 🕲	6	124	F	95	101	+0.4	Υ
AAC Spitfire 🕲	11	122	G	92	100	+0.3	Υ
AAC Cabri	6	119	F	96	103	+0.6	Y
CDC Carbide VB	7	118	F	96	101	+0.4	Y
Enterprise 🕲	10	114	P	94	101	+0.4	Y
A	6						Υ
Transcend 🕲		112	G	100	103	+0.7	
CDC Fortitude	7	111	G	90	102	0.0	Υ
Brigade 🕲	8	110	G	98	104	+0.2	Υ
Strongfield 🙆	14	109	F	92	101	+0.7	Υ
CDC Verona 🕲	8	106	G	92	103	+0.5	Υ
AAC Marchwell VB	9	102	F	93	101	-0.8	Υ
AAC Current 🕲	8	102	F	97	99	+0.6	Υ

Average plot yield of Carberry (check): 5,080 kg/ha (75.5 bu/ac) Lodging: P = poor; F = fair; G = good; VG = very good

PBR in effect or filed

The spring wheat table continues on the following page.

Spring Wheat

		Yield				% Protein	
	Site	as % of	Lodging	Height	Days to	+/-	Head Awns
Variety	Years	Carberry	Rating	(cm)	Maturity	AC Barrie	Present
Canada Northern Hai	rd Red						
Prosper	8	129	G	88	100	-1.3	Υ
Faller	8	127	G	88	100	-1.2	Υ
Elgin ND	6	110	G	90	100	-0.2	Υ
Canada Western Spe	cial Purpo	ose					
CDC NRG003 🕲	6	133	G	88	100	-1.6	Υ
SY087 🕲	6	127	VG	90	100	-0.5	Υ
AAC Innova 🔞	8	125	G	91	103	-2.9	Υ
Pasteur 🕲	8	120	VG	87	104	-1.6	N
Minnedosa 💩	10	119	G	89	97	-1.6	Υ
AAC NRG097 🔞	6	115	VG	85	100	-2.7	Υ
Canada Western Hard	d White S	pring					
AAC Whitefox 🐵	6	105	G	98	97	-0.6	N
Snowstar 🕲	5	102	VG	88	95	-0.7	N
Whitehawk 🕲	5	96	VG	97	97	-0.4	N
CDC Whitewood 🐵	5	94	G	88	98	-0.3	Υ
Canada Prairie Spring	g Red						
Conquer VB 🕲	10	124	G	93	99	-0.7	Υ
AAC Foray VB 🕲	9	118	G	91	100	-1.4	Υ
5702PR 🕲	6	115	F	87	97	-0.1	Υ
AAC Penhold 🕲	9	112	VG	78	99	-0.8	Υ
AAC Ryley 🙆	8	111	G	87	98	-1.1	Υ
Canada Western Soft	White S	oring					
AAC Chiffon VB 🕲	8	145	VG	99	102	-3.3	Υ
AAC Indus VB 🔞	8	144	VG	96	106	-3.6	Υ
AC Andrew	11	132	VG	88	101	-3.0	Υ
Sadash 🕲	11	125	VG	89	101	-2.5	Υ
Bhishaj 🕲	4	117	G	90	100	-2.9	Υ

Average plot yield of Carberry (check): 5,080 kg/ha (75.5 bu/ac) Lodging: P = poor; F = fair; G = good; VG = very good

PBR in effect or filed

A number of newer registered varieties are not yet included in the spring wheat table due to insufficient site years of testing. However, these varieties may have been evaluated; for inquiries about those varieties that have not been listed above, please contact Garry Hnatowich (see page 1).

Malt Barley

Growers are reminded that the malting industry is cautious about using new varieties.

Information on recommended malting barley varieties for 2018-2019 can be found on the Canadian Malting Barley Technical Centre (CMBTC) website at www.cmbtc.com.

Lines under Test

Commercial acceptability of malting varieties is given only after two years of successful plant-scale evaluation. Several carload lots of barley are malted and brewed then subjected to a taste panel. This process normally takes a minimum of three years, since a crop grown in one year will be malted in January-February, brewed in May-June, and aged and tasted in October-November of the following year. Growers are cautioned that most malting varieties, especially two-row barley, are more susceptible to sprouting.

CDC PolarStar and CDC PlatinumStar are available only through a closed loop **Identity Preserved program** offered by Prairie Malt Limited/Sapporo Breweries and their agents.

			Yield				
	2- or		as % of				
	6-	Site	AC	Lodging	Height	Days to	
Malting Variety	Row	Years	Metcalfe	Rating	(cm)	Maturity	
Malting Acceptance: Recommended, in Development or Limited Demand							
AAC Synergy 🐵	2	5	121	G	90	95	
Newdale 🙆	2	8	116	G	87	95	
Legacy 🕲	6	9	114	G	87	97	
CDC Copeland 💩	2	8	114	G	97	95	
Tradition	6	10	112	G	88	97	
Celebration 🙆	6	5	105	G	90	94	
Bentley 💩	2	6	104	G	93	96	
CDC Meredith 🔞	2	5	104	Р	88	96	
CDC Kindersley 🔞	2	5	104	G	90	92	
AC Metcalfe 🙆	2	11	100	G	91	95	
Merit 57 🔞	2	6	100	G	89	99	
CDC PolarStar 🙆	2	5	95	Р	89	95	
Other: A malting ma	rket may	exist, re	view CMBTC i	recommend	lation list	for	
updates							
CDC Clyde 🙆	6	6	125	VG	83	97	
CDC Bow 🙆	2	4	115*	G	90	96	
CDC Battleford 🐵	6	8	110	F	92	98	
Major 🙆	2	5	109	G	88	93	
Cerveza 🕲	2	5	109	VG	89	95	
CDC PlatinumStar	2	4	105*	G	97	96	
CDC Anderson 🔞	6	5	101	G	89	96	

99

84

G

89

86

95

94

Average plot yield of AC Metcalfe (check): 6,450 kg/ha (119.9 bu/ac)

5

11

2

2

CDC Landis

Harrington

Maturity: E = early; M = medium: L = late

The barley table is continued on the following page.

PBR in effect or filed

^{*} Limited site years, additional site years are required for accuracy Lodging: P = poor; F = fair; G = good; VG = very good

Feed & Food Barley

CDC Cowboy and CDC
Maverick are 2-row forage
varieties of barley. CDC Carter
and CDC McGwire are 2-row
normal starch hulless barleys
suitable for food use.

Disease resistance, straw strength, and maturity are more critical when barley is grown under irrigation. Growers should select early, strong-strawed, diseaseresistant varieties.

In hulless varieties, the hull is left in the field; therefore, comparable yields are 9–12 percent lower. Hulless seed is more susceptible to damage than hulled seed, so handling should be minimized.

Most available varieties are susceptible to one or more types of smut. Therefore, seed of susceptible varieties should be treated with a registered fungicide of a regular basis.

Harvesting grain that is in excess of 16 percent moisture and then using aeration bins for drying can lead to sprouting and embryo death. Seed with reduced germination is undesirable for seed or malting.

Two-row barley varieties are generally more resistant to shattering than six-row varieties.

For additional information, refer to the Saskatchewan Ministry of Agriculture annual publication, *Varieties of Grain Crops*, *2018*.

	2- or		Yield			
Feed and Food	6-	Site	as % of	Lodging	Height	Days to
Variety	Row	Years	AC Metcalfe	Rating	(cm)	Maturity
Hulled						
AC Rosser 🔞	6	9	128	Р	85	94
Alston	6	5	123	G	84	100
Claymore 🕲	2	4	123*	G	93	96
Champion 🙆	2	7	121	G	86	95
CDC Austenson	2	6	121	VG	89	96
Xena 🙆	2	6	121	F	91	95
CDC Coalition 🕲	2	6	117	VG	87	95
McLeod 🕲	2	8	116	G	81	93
Amisk 🕲	6	5	116	G	91	96
CDC Trey 🔞	2	7	114	VG	91	95
Brahma 🙆	2	5	113	VG	89	93
Oreana 🕲	2	4	112*	G	80	96
Sundre 🕲	6	7	110	G	90	99
Breton 🕲	6	3	110*	Р	92	95
CDC Helgason 🕲	2	7	108	G	91	94
CDC Dolly	2	9	105	Р	82	93
Chigwell 🙆	6	5	105	VG	85	96
Canmore 🙆	2	5	103	G	92	97
CDC Cowboy 🕲	2	8	102	F	105	99
Muskwa 🕲	6	5	102	G	81	96
AC Metcalfe 🙆	2	9	100	G	91	96
CDC Maverick 🕲	2	5	93	Р	106	96
Hulless						
Enduro	2	5	100	VG	83	96
CDC Clear	2	5	100	G	98	97
CDC Carter 🔞	2	5	91	F	90	98
CDC McGwire 🕲	2	7	88	F	91	97
Taylor 🕲	2	5	80	VG	94	97

Average plot yield of AC Metcalfe (check): 6,450 kg/ha (119.9 bu/ac)

Lodging: P = poor; F = fair; G = good; VG = very good

Maturity: E = early; M = medium: L = late

PBR in effect or filed

^{*} Limited site years, additional site years are required for accuracy

Field Pea

Growers should be aware that the check variety was changed from CDC Golden to CDC Amarillo in 2018, and the number of site years and relative performance of varieties has changed from past publications as a reflection of this.

The following varieties have purple flower colour and pigmented seed coats: CDC Mosaic and CDC Dakota. CDC Mosaic has a maple-patterned seed coat; CDC Dakota has a solid dun (tan) coloured seed coat. All other varieties have white flower colour and non-pigmented seed coats.

All pea varieties will lodge under irrigation. Those with better lodging tolerance will stand later into the season. These varieties tend to be less affected by disease, fill more fully, and generally produce a higher yield with superior seed quality.

For detailed production information, consult the *Pulse Production Manual* published by Saskatchewan Pulse Growers.

		Yield			Vine	Seed
	Site	as % of CDC	Lodging	Days to	Length	Seed Weight
Variety	Years	Amarillo	Rating	Maturity	(cm)	(g/1000)
Green			·		<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CDC Patrick	7	97	F	91	88	176
CDC Limerick	7	94	G	93	89	205
CDC Pluto	4	94	F	89	81	158
CDC Greenwater	5	92	G	93	96	233
CDC Raezer	7	90	G	91	92	230
CDC Tetris	7	86	G	95	92	217
CDC Striker	7	82	G	90	80	246
Cooper 🐵	4	70	G	92	85	249
Yellow						
AC Earlystar 💩	5	119	G	88	94	212
CDC Inca 🕲	5	118	G	92	94	238
Agassiz 🐵	7	104	F	90	89	235
CDC Amarillo	7	100	G	92	95	238
Abarth	5	98	G	89	96	274
AAC Ardill	5	97	G	90	91	245
CDC Treasure	4	92	G	90	85	213
CDC Golden	7	90	F	89	85	207
CDC Saffron	7	87	G	90	83	237
CDC Meadow	7	84	G	89	85	203
CDC Hornet	4	78	G	93	92	188
Red						
Redbat 8 🙆	5	100	Р	91	85	199
Dun	_					
CDC Dakota	7	92	G	93	89	214
Maple						
CDC Mosaic	4	64	G	92	89	159
Forage/Silage						
CDC Horizon	4	62	G	92	90	157

Average plot yield of CDC Golden (check): 5,596 kg/ha (83.2 bu/ac)

PBR in effect or filed

Lodging: VP = very poor; P = poor; F = fair; G = good

Dry Bean - Wide Row

Site Years 10 25 8 15	Yield as % of Winchester 122 120 110	Days to Maturity 100 100	Seed Weight (g/1000) 363 384
10 25 8	Winchester 122 120	100 100	(g/1000) 363
10 25 8	122 120	100 100	363
25 8	120	100	
25 8	120	100	
8	-		304
_	110	96	380
15	107		391
4.4			
			363
_			361
6	76	95	376
28	103	100	278
14	101	102	196
8	100	100	275
9	84	100	196
6	71	107	190
14	108	98	371
9	96	97	391
26	88	99	357
15	103	104	269
5	88	97	306
18	107	97	333
5	98	97	321
5	76	94	408
11	62	102	423
	14 28 6 28 14 8 9 6 14 9 26 15 5	15 107 14 103 28 100 6 76 28 103 14 101 8 100 9 84 6 71 14 108 9 96 26 88 15 103 5 88 18 107 5 98	15 107 99 14 103 102 28 100 98 6 76 95 28 103 100 14 101 102 8 100 100 9 84 100 6 71 107 14 108 98 9 96 97 26 88 99 15 103 104 5 88 97 18 107 97 5 98 97 5 76 94

Wide Row Trials

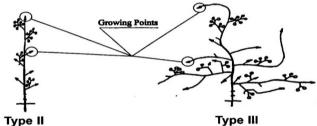
Commercial row crop production is typically on 55 cm (22 in.) or 75 cm (30 in.) centres. The wide row bean trials are grown on 60 cm (24 in.) rows to evaluate varieties under conditions similar to conventional practice.

Yield and days to maturity are important factors when choosing a bean variety. Spring or fall frost can destroy a dry bean crop. It is important to select a variety that will mature during the normal frost-free season for your region.

CDC WM-2 is a slow-darkening pinto dry bean variety.

AC Black Diamond and AAC Black Diamond II have large shiny seeds. Black Violet has smaller, buff-coloured seeds.

Average plot yield of Winchester (check): 3,515 kg/ha (3,135 lb/ac)



PBR in effect or filed

Type I Determinate bush

The main stem and branches end in flowers. Flowering lasts 10 to 20 days with fairly uniform pod maturity.

Dry Bean Plant Type

Indeterminate short vine

The main stem is erect. The stem and branches end in vegetative buds. Flowering lasts 10 to 30 days with uneven pod maturity.

Type III Indeterminate sprawling vine

The stems are semi-prostrate with well developed branches and a dense canopy. Flowering is similar to Type Il plants.

Graphic courtesy Colorado Dry Bean Production and IPM Bulletin 548A. Colorado State University Co-operative Extension and Agricultural Experimental Station. 1990.

Dry Bean - Narrow Row

The narrow row dry bean trials are sown on 20 cm (8 in.) row spacing to evaluate performance in a solid seeding management practice.

The pod clearance rating is a measure of the proportion of pods held 5 cm (2 in.) or more above ground level. This gives an indication of the suitability for harvest using a direct cut harvest system. Varieties with higher pod clearance ratings will normally have lower harvest losses.

The narrow row variety trials are a separate test from the wide row trials. These tests are not designed to compare conventional wide row and solid seeded management. Narrow row yields and variety rankings cannot be compared to Wide Row yields and variety rankings in these tables.

For other Market Type Varieties not listed here, please contact Garry Hnatowich (see contact page 1).

Г					
	Plant	Site	Yield	Pod	David +0
Variety	Plant Type	Years	as % of Winchester	Clearance Rating*	Days to Maturity
Pinto	1960	1 Cui 5	VVIIICIICICI	- Maring	Matarity
AC Ole	П	7	125	76	103
Medicine Hat	'' II	, 17	119	70 72	100
Winmor	"	10	112	72 74	101
AC Island	'' II	35	110	68	100
AAC Burdett	'' II	10	109	80	95
Winchester	- 11	35	100	77	98
CDC WM-2		25	95	77	98
Mariah (1)	" II	8	94	72 74	103
CDC Pintium	ı,	22	88	84	93
CDC Marmot	' 	16	86	68	93 92
	<u> </u>	10	ου	ОО	72
Black		0	100	7.6	100
AAC Black Diamond II	II	8	106	76 70	100
AC Black Diamond	II II	20	105	79	100
Carmen Black	II 	7	105	84	104
CDC Jet	II 	17	104	84	103
CDC Superjet	II 	8	104	79	103
CDC Blackstrap	II 	9	100	83	97
Black Violet	II 	7	99	82	101
CDC Blackcomb	II	19	96	78	100
Great Northern					
AAC Tundra	II	14	108	68	98
AAC Whitestar	II	6	103	75	99
Alert	Ш	4	101	79	104
AAC Whitehorse	П	8	97	73	98
Resolute	П	20	92	73	99
Small Red					
AC Redbond	П	10	102	78	97
Navy					
Cargo	1	4	96	81	97
Portage	II	7	87	81	101
Envoy	I	15	84	76	97
OAC Lightning	II	8	85	85	102
OAC Spark	I	9	75	80	100
Skyline	I	7	70	72	102
Yellow					
CDC Sol 🔞	1	14	78	74	101
Arikara Yellow	1	6	71	74	93

Average plot yield of Winchester (check): 4,410 kg/ha (3,933 lb/ac)

^{*}Pod clearance rating = % of pods that completely clear the cutter-bar at time of swathing.

PBR in effect or filed

Faba Bean

Variety	Site Years	Yield as % of CDC Fatima	Days to Maturity	Seed Weight (g/1000)
Coloured Flow	/er			
Florent	5	114	114	635
CDC Fatima	11	100	112	526
CDC Blitz	7	98	116	428
FB9-4	5	97	111	759
FB18-20	4	93	112	788
Orion	6	91	117	349
Taboar 🕲	5	91	114	499
White Flower				
Imposa 🕲	3	111	115	667
Tobasco 🕲	3	93	115	522
Snowbird 🕲	8	86	114	483

Faba bean is late maturing and should be sown early for best results.

CDC Fatima combines earlier maturity and shorter height with high yield potential. Its large seed size is preferred in some markets. White-flowered types are zero tannin. All coloured flower types have seed coats that contain tannins and are considered suitable for food markets if seed size and quality match customer demand.

Average plot yield of CDC Fatima (check): 5,054 kg/ha (4,508 lb/ac)

PBR in effect

Soybean

As of 2017 the *check* variety for the Saskatchewan Soybean Regional Variety Trials was changed to TH 33003 R2Y. ICDC has limited consecutive growing season years of trials with this variety. Therefore the following table provides soybean results from both our irrigated and dry land trials to increase site years of observations. Producers are cautioned on the limited number of test years in the soybean table and to use this information as a guide but seek further information on any variety. Yield values are subject to vary highly until additional site years are obtained.

Soybean is a potential new legume crop that may have promise within the irrigated areas of Saskatchewan. By definition, they are not a "pulse crop." The Food and Agricultural Organization (FAO) categorizes pulse crops as those harvested solely for the dry seed, such as field pea, dry bean, and lentil. Soybean is primarily grown for its oil content, although its meal is also a commodity. In practical terms, consider soybean as an oilseed crop with the ability to fix nitrogen!

The soybean table begins on next page.

Soybean (continued)

			V:-1-I					Seed	
Variety	Туре	Site Years	Yield as % of TH 33003 R2Y	Relative Maturity	Days to Maturity	Height (cm)	Lodge Rating	Weight (g/1000)	Hilum Colour
Sampsa RR	R2Y	6	118	00.8	123	94	VG	167	BL
NSC Gladstone RR2Y	R2Y	7	115	00.4	122	95	VG	202	BL
McLeod R2	R2Y	12	113	00.3	119	94	VG	184	BL
Akras R2	R2Y	8	113	00.3	119	83	VG	165	BL
Lono R2	R2Y	8	113	00.5	120	90	VG	165	BL
S007-Y4	R2Y	8	113	00.5	118	85	VG	161	IY
Hero R2	R2Y	6	113	00.4	122	90	G	161	BL
Pekko R2	R2Y	7	111	00.3	118	102	VG	160	BL
23-60RY	R2Y	10	111	00.3	123	97	VG	169	BL
LS 002R23	R2Y	6	110	00.2	121	92	VG	158	BL
TH 32004R2Y	R2Y	12	109	00.4	121	87	VG	162	BL
TH 33005R2Y	R2Y	7	108	00.5	123	95	VG	175	BL
NSC Reston RR2Y	R2Y	11	107	00.1	119	85	VG	146	BL
900Y71	RR1	6	107	00.7	123	87	VG	170	TN
22-60RY	R2Y	8	106	000.9	117	75	VG	160	BL
Mahony R2	R2Y	6	105	00.3	120	88	VG	160	BL
NSC Watson RR2Y	R2Y	6	105	8.000	113	80	VG	160	IY
S0009-M2	R2Y	6	105	000.9	113	79	VG	159	IY
LS 002R24N	R2Y	10	104	00.2	119	97	VG	181	BL
HS 006RYS24	R2Y	10	103	00.6	122	99	VG	178	BL
PS 0035 NR2	R2Y	8	102	00.3	118	92	VG	161	BL
23-11RY	R2Y	6	102	000.9	119	90	G	161	BL
TH 33003R2Y	R2Y	12	100	00.3	120	92	VG	162	BR
NSC Tilston RR2Y	R2Y	11	100	00.4	120	94	VG	162	BL
P002T04R	RR1	8	100	00.2	114	84	VG	160	TN
NSC Anola RR2Y	R2Y	7	100	00.2	121	86	VG	156	BL
LS NorthWester	R2Y	8	99	00.2	119	103	VG	161	BL
TH 35002R2Y	R2Y	6	99	00.2	119	87	VG	162	BL
NSC Libau RR2Y	R2Y	5	99	00.4	123	99	VG	172	BL
NSC Moosomin RR2Y	R2Y	7	98	000	116	75	VG	162	BR
Bishop R2	R2Y	12	97	00.2	116	90	VG	158	BL
900Y61	RR1	8	97	00.6	122	89	VG	180	BR
Vito R2	R2Y	9	94	00.3	119	98	VG	154	BL

Average plot yield of TH 33003R2Y (check): 3,575 kg/ha (3189 lb/ac).

Varieties are either RI = Roundup Ready 1 or R2Y = Genuity Roundup Ready 2 Yield TM.

Hilum is the point where the seed attaches to the pod: BR = Brown, BL = Black, TN = Tan, IY = Imperfect Yellow

In North America, soybean varieties are classified into maturity groupings from 9 in the southern USA to 1 or 0 in southern Ontario. 00 refers to shorter season varieties than 0 types, while 000 refers to shorter season varieties than 00 types. The decimal point notation refers to differences within a class, for example, 00.1 should be a shorter season variety than 00.2.

For a complete list of commercial varieties see Seed Manitoba 2018 (www.seedmb.ca).

Soybean—Notes

Experience in commercial production in Saskatchewan is limited. However, the following considerations, based upon established soybean producing areas, should be considered:

- Limit first time acreage, start slowly.
- Select an early maturing variety. Relative Maturity ratings are assigned by individual seed companies; growers should not rely on only one source for judging maturity.
- Best suited to medium to light (irrigated) soils, heavy textured soils may cause planting and emergence problems such as compaction and crusting. However, heavier textured soils can produce soybean well once the crop is established.
- Despite their long maturity, do not seed too early! Soil temperatures need to warm to, or exceed, 10°C, the warmer the soil, the quicker the emergence, similar to dry bean. Cool soil temperatures can result in seed rot and pathogenic seedling diseases. Treat with a recommended fungicide seed treatment.
- Target a plant population of 445,000 to 495,000 plants/ha (180,000 200,000 plants/ac). Emergence should ensure 40 plants/m² (4 plants/ft²). Soybean varieties differ in seed size. Equipment calibration is required to achieve successfully established populations.
- Seeding depth should be approximately 2.0–3.8 cm (0.75–1.5 inches), soybean are sensitive to deep seeding.
- **INOCULATE** soybean require a specific species of rhizobia not native to our soils. Failure to inoculate with a "soybean" specific inoculant will result in complete nitrogen fixation failure! For the first & second time soybean is planted on any field growers are advised to use a full rate of granular inoculant coupled with a liquid seed-applied inoculant. Though inoculant costs exceed those of pea/lentil, they are warranted.
- Generally, soybean are not as efficient as pea/lentil/faba bean in terms of nitrogen fixation, being more similar to dry bean. Should plants start yellowing by or during flowering, consider a top-dress application of 45–55 kg/ha N (40–50 lbs/ac N) and irrigate with 0.6–1.25 ml/ha (0.25–0.5 inch/ac).
- Do not exceed 22 kg/ha P₂O₅ (20 lbs/ac P₂O₅) seed-placed phosphorus in solid seeded production.
 Soybean is an efficient "scavenger" of soil phosphorus, but these phosphorus rates may be insufficient for soils with low soil phosphorus reserves. Higher rates need to be side banded. For row cropped production reduce seed row rates. Side band applications are recommended.
- Weed control is essential, as soybean seedlings are non-competitive. Cultivation can be used in wide row production. For both conventional and herbicide tolerant varieties, refer to the Saskatchewan Ministry of Agriculture annual publication, *Guide to Crop Production*, 2018 for herbicide options.
- Wireworms and grasshoppers may be the primary insect pests in irrigated areas.
- Sclerotinia (white mold) can affect soybean. Sufficient separation from pulses and canola in crop rotation is important.
- A killing frost will likely dictate time of harvest. A killing frost will not degrade the oil quality of the
 crop, but will diminish seed size of later maturing top pods. Soybean varieties tested have excellent
 lodging resistance, so can be direct combined. Combine when seed moisture is less than 20% and
 adjust cylinder speed and concave clearance to minimize cracking or splitting of seed. Safe seed
 storage is 12% moisture or less.

Corn

The Alberta Corn Committee (ACC) irrigated grain and silage corn hybrid performance trials were conducted at CSIDC from 2003–2015. Results from the trials for each individual year, as well as a multi-year summary, are available on the ACC website at **www.albertacorn.com**.

A second silage corn hybrid performance trial was initiated in 2012, specifically on behalf of ICDC. For this trial, seed company representatives were invited to submit silage hybrids they deemed adapted to the Lake Diefenbaker Development Area and that were commercially available at the local level.

On the basis of these two trials, the following **silage** corn hybrid performance results were generated specifically for the irrigated area of West Central Saskatchewan. Results of the 2016 ICDC silage corn hybrid trial are available upon request.

		CHU	Site	Dry Matter Yield	% of Bayyos	Whole Plant	Days to	Days to
Hybrid	Company	Rating	Years	(T/ac)	RR (check)	Moisture (%)	Anthesis	Silking
HL R219 RR	Hyland	2350	9	8.1	114	66.1	77	78
SilEx Bt RR	Pickseed	2200	5	8.1	114	68.4	75	78
A4705HMRR	Pride Seeds	2350	3	8.1	114	68.1	75	77
P7443R RR	Pioneer	2100	4	7.9	111	57.8	73	77
39M26 RR	Pioneer	2100	4	7.7	109	62.0	67	74
HL 3085 RR	Hyland	2400	7	7.4	104	67.3	77	80
HL B22R	Hyland	2400	3	7.4	104	74.2	76	81
39F57	Pioneer	2200	4	7.3	103	64.3	75	78
2791RR	Seeds 2000	2250	3	7.3	103	68.3	77	78
P8210HR	Pioneer	2475	4	7.2	102	66.2	76	79
Fusion RR	Elite	2200	3	7.2	102	65.8	74	78
Baxxos RR	Hyland	2250	9	7.1	100	65.9	71	76
N05C-GT	Syngenta	2250	4	7.1	100	65.1	73	76
DKC30-07RIB	Monsanto	2325	7	7.1	100	68.7	77	82
39V05	Pioneer	2350	4	7.0	98	62.3	73	79
HL 2093	Hyland	2300	5	6.9	97	62.3	70	75
X14008GH	Dow Seeds	2450	4	6.9	97	69.8	81	86
DKC26-78	Monsanto	2150	3	6.8	96	63.3	69	74
X13002S2	Dow Seeds	2300	3	6.8	95	69.0	75	82
DKC33-78RIB	Monsanto	2500	4	6.7	94	68.9	76	81
39D95	Pioneer	2150	5	6.4	90	64.7	73	78
39F45	Pioneer	2000	3	6.4	90	54.5	63	70

Select a variety with a Corn Heat Unit (CHU) rating suitable to your area. A CHU map of Saskatchewan is available on the Saskatchewan Ministry of Agriculture website at

http://publications.gov.sk.ca/documents/20/83796-c62b9cc6-955c-4989-9064-928369ffb44d.pdf.

Information on corn production can be found in *Corn Production in Manitoba*, published by the Manitoba Corn Growers Association. To order the manual, go to the Manitoba Agriculture website at http://www.gov.mb.ca/agriculture/crops/guides-and-publications/#cpm.

Annual Cereal Forage

	C't-	Dry Matter				
Variety	Site Years	Yield (% of check)	% CP	% NDF	% ADF	% TDN
Barley 2-row		(,				
Newdale 🕲	8	108	12.3	48.4	29.7	63.9
CDC Cowboy 🕲	9	108	12.4	51.2	31.9	62.6
CDC Copeland 🕲	9	102	11.6	51.1	32.6	62.4
Stockford 🕲	6	103	13.3	52.2	32.8	61.8
CDC Bold	10	95	12.9	49.3	30.5	64.1
Barley 6-row						
Binscarth	6	110	12.9	48.0	29.3	63.9
AC Ranger (check)	12	100	12.5	49.5	30.7	63.4
AC Rosser 🔞	12	102	13.0	47.4	29.2	64.8
AC Hawkeye	11	96	12.7	51.9	32.6	62.2
Vivar 🕲	11	96	11.8	48.9	29.7	64.4
Trochu 🕲	11	94	12.7	48.1	29.8	60.5
CDC Battleford 🕲	9	93	12.1	47.3	30.5	64.4
Oats						
Pinnacle 🕲	11	105	11.0	52.5	34.6	60.2
Calibre	11	104	11.5	51.8	35.3	59.2
AC Morgan	11	102	11.1	51.0	33.7	60.3
CDC Baler* (check)	11	100	11.5	56.5	37.0	58.4
Triticale						
Comet*	12	101	12.1	58.5	40.0	55.3
Banjo	12	100	13.4	59.6	39.4	55.5
Viking*	12	98	12.2	59.5	40.1	55.2
Pronghorn (check)	12	100	13.9	57.9	38.3	55.8
AC Ultima	12	94	12.6	55.3	35.8	58.9

Average dry matter yield of check: AC Ranger = 15,248 kg/ha (6.80 tons/ac)

CDC Baler = 15,703 kg/ha (7.00 tons/ac)

Pronghorn = 13,908 kg/ha (6.00 tons/ac)

PBR in effect

Barley and oat varieties harvested at soft dough; triticale varieties harvested at late milk – early dough.

CP = Crude Protein NDF = Neutral Detergent Fibre ADF = Acid Detergent Fibre TDN = Total Digestible Nutrients

*Varieties available for annual forage production.

Alfalfa

	Site	Yield
Variety	Years	as % of Beaver
Steak	3	118
Approved	3	114
Forecast 1001	3	112
WinterGold	3	112
AC Nordica	4	111
WL 327	3	110
Starbuck	3	109
54V46	4	109
WL 232 HQ	3	109
Spredor 4	3	108
Gibraltar	3	107
Perfect	3	107
AC Blue J	22	106
Survivor	3	106
AC Longview	7	106
Pickseed 2065MF	7	106
54V54	7	106
Pickseed 8925MF	4	105
421Abacus	3	105
AmeriStand 201+Z	7	105
AgriMaster	3	105
Geneva	7	104
HybriForce-400	3	104
134	3	104

	C:t-	
Variety	Site Years	Yield as % of Beaver
Atomic	3	104
WL 319 HQ	3	104
Equinox	3	103
53Q60	7	103
AC Grazelander Br 🕲	7	103
Dakota	3	103
Tophand	3	103
StockWell	10	102
Proleaf	3	102
Barrier	11	102
Gala	4	102
Magnum 3801 Wet	3	101
Quattro HR	3	101
Beaver	34	100
Rhino	3	98
Magnum III-WET	3	97
Rangelander	22	96
HayGrazer	3	96
Convoy	3	95
53Q30	3	94
54Q25	3	93
Dalton	3	93
Runner	6	93
Rambler	34	91

Alfalfa varieties were evaluated in the Western Forage Testing (WFT) System trials from 1996 to 2009 and in the ICDC/Saskatchewan Forage Council trials established under irrigation in 2002 at CSIDC and in 2003 at Osler, Saskatchewan. WFT variety trials are established each year, and forage yields are measured for each of the following three years. All data is for a two-cut system, except for 2001 to 2003, when three cuts were taken.

Varieties with rapid re-growth after cutting are best suited to intensive management. For more information on alfalfa varieties, including disease resistance, consult the latest *Forage Crop Production Guide* available from Saskatchewan Ministry of Agriculture (http://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/forage-production-annual-native-perennial/forage-crop-production).

The contribution and co-operation of Dr. B. Coulman of the Department of Plant Sciences, University of Saskatchewan, toward the alfalfa, timothy, and forage grass variety testing is gratefully acknowledged.

Timothy

	Site	Yield
Variety	Years	as % of Climax
AC Alliance	5	116
Dolina	3	114
Express	3	113
Grinstad	11	112
Joliette	5	112
Jonatan	5	111
Richmond	8	109
Timfor	6	108
Turku	3	104
Winnetou	3	103
TimPro	3	102
Tenho	3	102

	Site	Yield
Variety	Years	as % ofClimax
Alexander	6	101
Drummond	8	100
Nike	6	100
Climax	11	100
Argus	6	97
Toro	6	97
Glacier	3	96
Carola Champ	6	93
Topi	3	91
Bottnia II	6	89
Tuukka	3	87

Average dry matter yield of Climax (check): 11,040 kg/ha (4.92 tons/ac)

Irrigated timothy trials were conducted at CSIDC and at the Semiarid Prairie Agricultural Research Centre (SPARC) in Swift Current from 1995 to 1997. Western Forage Testing (WFT) System trials were conducted at CSIDC from 1996 to 2007. AAFC Timothy Performance Trials were conducted at CSIDC in 2004 and 2005. Results from all trials are included in the table.

The trials were harvested in early July and in late August of each year. Export markets prefer high leaf content and long seed heads. **Drummond** had the longest seed heads and the second highest leaf content in the trials conducted from 1995 to 1997. **Richmond** had a lower fiber content and higher nutritive value, making it better suited to the domestic dairy hay market than other varieties tested in the 1995 to 1997 trials.

Perennial Forage

		Yield
Variety	Site Years	as % of check
Birdsfoot Trefoil		
AC Langille	3	117
Leo (check)	3	100
Cicer Milkvetch		
Windsor	2	101
Oxley (check)	2	100
AC Oxley II	2	90
Crested Wheatgrass		
AC Goliath	2	109
Kirk (check)	3	100
Smooth Bromegrass		
Carlton (check)	3	100
AC Rocket 🐵	3	100
Radisson	3	99
Meadow Foxtail		
Dan (check)	3	100
Mountain	3	87

		Yield
Variety	Site Years	as % of check
Orchard Grass		
Tundra	3	121
Early Arctic	3	118
Kootenay	3	106
Killarney	3	105
Kay (check)	3	100
Kayak	3	91
Meadow Bromegr	ass	
Montana	3	112
MBA	3	104
Fleet (check)	3	100
Tall Fescue		
Courtney (check)	3	100
Kokanee	3	88

Average dry matter yield of check:

Leo = 10,743 kg/ha (4.79 tons/ac)

Oxley = 9,496 kg/ha (4.24 tons/ac)

Kirk = 14,493 kg/ha (6.46 tons/ac)

Carlton = 16,004 kg/ac (7.14 tons/ac)

Dan = 10,155 kg/ha (4.53 tons/ac)

Average dry matter yield of check:

Kay = 10,137 kg/ha (4.52 tons/ac)

Fleet = 13,433 kg/ha (6.09 tons/ac)

Courtney = 13,958 kg/ha (6.23 tons/ac)

PBR in effect

The research ICDC conducts is summarized in several useful publications, including:

- Annual Research and Demonstration Program Report
- Irrigated Alfalfa Production in Saskatchewan
- Management of Irrigated Dry Beans
- Corn Production
- Irrigation Economics and Agronomics
- Crop Varieties for Irrigation (annual update)
- Irrigation Scheduling Manual
- *The Irrigator* (newsletter)

For these and other publications concerning irrigation in Saskatchewan, see our web site: www.irrigationsaskatchewan.com/icdc

Box 1460 Outlook, SK SOL 2NO