

Fungicides and Irrigation Water Management

Moose Jaw, Dec 6 & 7 ICDC/SIPA Conference Rory Cranston PAg. Provincial Irrigation Agrologist

Projects

- Dry Bean Irrigation Scheduling
- White Mold Disease Survey
- White Mold Control in Dry Beans
- Fungicide Application Timing on Wheat
- Canola Fungicide Demonstration
- Irrigation Water Management

Dry Bean Irrigation Scheduling

- Objective was to demonstrate two irrigation strategies for dry beans
- Two treatments and a dry land check
 - Adequate Irrigation
 - Deficit irrigation (no irrigation prior to flowering)
- Varieties WM2, Winchester, AC Island,
 Othello, Medicine Hat, Maya

Dry Bean Irrigation Scheduling

- Project was located at CSIDC
 - Dr. Jazeem Wahab
 - Greg Larson
- Adequate Irrigation
 - First irrigation June 15
 - Nine irrigations for 112.5mm (4.5 inches)
- Deficit Irrigation (prior to flowering)
 - First irrigation July 27
 - Five Irrigations for 62.5mm (2.5 inches)

Dry Bean Irrigation Scheduling

Results of this project are still being processed

- Objective to determine the critical control period for white mold in dry beans in the LDDA
- Surveyed six fields every week from the start of July to the end of August
 - Three in Riverhurst
 - Dale Ewen, Gordon Kent, Rodney Kent
 - Three in Luck Lake
 - Garth Weitermen, Grant Carlson (two fields)

- ∑ ((severity class x number of plants in class) x 100) / number of plants
- Severity classes
 - -0 = No disease
 - 1 = Small lesions less than 5cm in the longest dimension
 - 2= Expanding lesions on branches or stem
 - 3= Up to half of branches or stem colonized
 - 4= More than half of the branches or stem colonized and/or plant dead

 100 plants were surveyed each week to determine disease severity

Disease Severity

Date	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
19-Jul	0	0	0	0	2	0
26-Jul	0	0	0	0	9	0
2-Aug	1	3	1	3	17	16
9-Aug	7	3	4	8	17	36
18-Aug	20	3	13	16	47	65
25-Aug	22	21	14	18	56	96

Used the following equation to determine disease severity

- White mold first showed up on July 19
- Was present in all fields by August 2
- A application of fungicide in the middle of July prevented early infection
- An application of fungicide after infection occurred stopped further development in two cases

Ministry of Agriculture White Mold Control in Dry Beans

- Objective was to demonstrate the best combination of fungicides in two fungicide application system
- One demonstration site
 - Craig and Michael Millar, Birsay SK
- Three treatments
 - Lance Allegro
 - Allegro Lance
 - Allegro Allegro

Ministry of Agriculture White Mold Control in Dry Beans

- 2011 had a low incidence of white mold
- Disease severity on Aug 24
 - Lance Allegro 20
 - Allegro Lance 21
 - Allegro Allegro 15
- Yield on Sept 11
 - Lance Allegro 2154 lb./acre
 - Allegro Lance 2211 lb./acre
 - Allegro Allegro 2995 lb./acre

Fungicide Application Timing

- Objective was to demonstrate the best timing for a fungicide application on wheat
- One demonstration site
 - Grant Pederson, Outlook SK
- Three treatments and untreated check
 - Application at flag leaf
 - Application at flowering
 - Combination

Fungicide Application Timing

 Leaf samples taken on Aug 11 showed visual difference of disease presence

Fungicide Application Timing

Harvest results on Sept 10

Treatment	Flowering	Flag Leaf	Combination	Untreated
Yield (bu./acre)	72	60	59	55
F.graminearium	4%	7.5%	4%	2.5%
Total Fusarium	5%	10.5%	7%	3%
TKW	34.68	33.42	33.20	32.88
Grade	2	2	2	2

- The objective of this project was to compare a single fungicide application to two fungicide applications in canola
- One demonstration site
 - Mark Gravalle, Riverhurst SK.
- Two treatments compared to an untreated area
 - One application of fungicide
 - Two applications of fungicide

 There was a noticeable difference between the treated and untreated areas

- There was a noticeable difference between the treated and untreated areas
- The producer noted that the treated areas were much easier to harvest
- Disease Severity (equation next slide)
 - Two Applications 1.6
 - One Application 2.2
 - Check 4.3

<u>Sum of the rating of all infected plants</u> = Disease severity The number of infected plants

- 0 No symptoms
- 1 Infection of pods only
- 2- Lesions situated on main stem or branches with potential to affect up to ¼ of seed formation and filling on plant
- 3- Lesions situated on main stem or branches with potential to affect up to ½ of seed formation and filling on plant
- 4- Lesions situated on main stem or branches with potential to affect up to 3/4 of seed formation and filling on plant
- 5- Main stem lesion with potential effects on seed formation and filling of entire plant

Harvest results on Sept 12

Treatment	Two App	One App	Check
Yield bu./acre	62	52	47
TKW	3.165g	3.193g	2.953g

 There was a sandy knoll in the single app treatment where the crop was visibly thinner. Favors the two app treatment

- The Objective of this project was to compare actual on farm water management practices to the optimum predicted by the Alberta Irrigation Management Model (AIMM)
- Six sites Three in the LLID and three in the RID
 - Roy King, Randy Bergstrom, Craig Langer,
 Gary Ewen

- Local weather station in each irrigation district collected environmental data
- Actual crop water use was calculated using the water balance formula

```
ET = (P + I) - R - D \pm \Delta S
```

Where ET = actual crop water use or evapotranspiration

```
P = precipitation
```

I = effective irrigation

R = runoff

D = deep percolation

 ΔS = change in soil moisture

- Sites were visited weekly
- Optimum irrigation plan was developed in AIMM based on field, crop, and local weather
- Irrigation events were added in 25mm increments at least 3 days apart and were managed to keep soil moisture at an optimum level above 70%

Available Soil Moisture (%)

Available Soil Moisture (%)

District	Crop	Crop Water use		Act/opt
		Actual(mm)	Optimum(mm)	
Riverhurst	Durum	345	405	85%
	Canola	353	367	96%
	Flax	372	393	95%
Luck Lake	Durum	339	380	89%
	HSW	339	383	89%
	Flax	314	363	87%
All sites average		344	382	90%

District	Crop	Effective Irrigation		Act/opt
		Actual(mm)	Optimum(mm)	
Riverhurst	Durum	182	300	61%
	Canola	140	225	62%
	Flax	129	250	52%
Luck Lake	Durum	98	225	44%
	HSW	91	280	33%
	Flax	101	225	45%
All sites average		124	251	49%

- Results indicate that farmers irrigate less than what is required for optimum production
- Indicate that irrigation is starting late

2012 Irrigation Agronomic and Economics

Aiming to release it at crop production show

Thank you!

Any Questions ?