

Irrigated Crop Diversification Corporation Program Report

2012 Southwest Field Projects
December 5, 2012
Heritage Inn, Moose Jaw

Gary Kruger PAg CCA Irrigation Agrologist

Program Overview

- Stand Termination/Tillage Demo
 - Val Marie, Rush Lake, Miry Creek ID
- Annual Forage Cereals Demo Val Marie
- Soil Fertility Demo on Forages
 - Fall Banded PK Zn- Alfalfa Yield (Miry Creek ID)
 - Spring Band/Broadcast PK Alfalfa Yield (Chesterfield ID)
 - Fall Broadcast PKS Alfalfa Yield (Consul)
 - Soil Test vs Traditional Practice on Barley (Eastend)

Program Overview

- Irrigated Salt Tolerant Alfalfa Variety Demo (CSIDC)
- Liebig's Law Fertility Demo on Wheat nutrient seed treatment & N + K (Luck Lake ID)
- Liquid & Granular Phosphate Demo on Canola (SSRID)
- Foliar Copper for Ergot Control on Spring Wheat (SSRID)
- N rate for Oats on Alfalfa Breaking (CSIDC)
- Irrigation Response of Lentil (CSIDC)

Key 2012 Events

- Dry fall and mild winter with cool wet spring (12 + inches)
- Excellent growing conditions for forage (spring rain may have come a little late)
- Excellent crop in 2012 but less than 2011

Alfalfa Sampling Transects at CSIDC

Transects

— Altered Transects

---- New Transects

Abandoned Transects

Bounday Line

Surface from VER

Non-Saline

Slightly Saline

Moderately Saline

Severely Saline

Very Severely Saline

Regression Y= 12.52 X + 51.26 R Squared = 0.90

Irrigation Crop Diversification Corporation

Saskalchewan Ministry of Agriculture

Verticalal EM Fall 2010 SE 15-29-08-W3M

G. Kruger

SE15

SG, KF, EL, GW

Lower

Interpretation of EM38 Readings

Salinity Rating	Saturation Extract EC _e (mS/cm)	EM38 Reading EC _a (apparent conductivity)
Non-saline	0 - 2	0 - 50
Slightly Saline	2 - 4	50 - 75
Moderately Saline	4 - 8	75 - 125
Severely Saline	8 - 16	125 - 200
Very severely saline	> 16	> 200

Henry's Handbook of Soil and Water (2003), p. 80

Salt Tolerant Alfalfa Variety Demo

Transect	Mean Vertical EM38 Reading	Salinity Rating	2012 Yield (t/ac)
1	162	Severe	3.642
2	150	Severe	3.884
3	133	Severe	3.981
4	112	Moderate	4.129
5	106	Moderate	3.569
6	106	Moderate	4.119
7	98	Moderate	4.209
8	99	Moderate	4.086

Salt Tolerant Alfalfa Variety Demo

North Rep

Photos taken in 2011

South Rep

CW064027

Bridgeview AC Bluejay Halo

Bridgeview Halo

CW064027

Variety	2012 Spring Stem Counts (shoots/m²)	2011 Forage Quadrat Yield (t/ac)	2012 Forage Harvester Yield (t/ac)
Halo	428	5.91	4.04
CW064027	280	5.44	3.35
AC Bluejay	475	5.05	3.80
Bridgeview	461	4.51	4.05

WL Research Haymaker recommends:

- > 550 shoots/m²
 - No yield loss
- > Less than 390
 - Replace stand

Irrigation Crop Diversification Corporation

Alfalfa Stand Density Ratings

Age of Stand (yr)	Stan	d Density (Plants/s	q.ft.)
	Poor	Marginal	Good
1	< 10	10 - 11	15 +
2	< 8	8 - 10	10 +
3	< 6	6 - 8	8 +
4	< 4	4 – 5	5 +

Stem Density (stem/sq.ft.)	Recommended Action
> 55	Stem density not limiting yield
40-55	Some yield reduction expected
< 39	Consider replacing stand

Source: http://www.wlresearch.com/stellent/groups/public/documents/web_content/ecmp0098718.pdf

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Treatments

Bill Coventry - Mantario

1) Control

4) K Band

2) P Broadcast

5) PK Broadcast

3) P Band

6) PK Band

Fertilizer application – May 2, 2011

Chesterfield Irrigation District – Soil Test Results

						NEUTRA	LAMMONIUM ACET	ATE (EXCHANGEA	(BLE)			
Grower ID	SAMPLE IDENTIFICATION	ORGANIC MATTER		PHOSPHO	RUS	POTASSIUM	MAGNESIUM	CALCIUM	SODIUM	pH	CATION EXCHANGE CAPACITY	PER CENT BASE SATURATION (COMPUTED)
	MODIFIED L.C PERCENT RA		P ₁ WEAK BRAY 1:7 ppm RATE	STRONG BRAY 1:7	BICARBONATE P OLSEN ppm RATE	\searrow	Mg ppm RATE	Ca ppm RATE į		SOIL BUFFEI pH INDEX 1:1	s 0940-24240 a	% % % % % % K Mg Ca H Na
	280085	3.3 M	4 VL	27 M	8 L	92 L	478 VH	2940 H	26	8.1	19.0	1.2 21.0 77.2 0.6
		Alles .					N. Contraction of the contractio	OTPA EXTRACTIO	N			- 4
		NITRATE-N (FIA))		SULFUR	ZINC	MANGANESE	IRON COP		ER BORC	0.000	A4 33 3 3 3 3 3 3 3 3 3 3 1 5 1 5 1 5 1 5
	Surface bs/A depth ppm	Sub 1	Sub 2 ppm lbs/A		IÇAF	Zn prenvaje	Mn pp ATE	Fe ppm RAT	Cu E ppm R/	ATE PATE	LIME RATE TE	SALTS 1:1 mmhos/ RATE

SOIL FERTILITY RECOMMENDATIONS (POUNDS PER ACRE) by MIDWEST LABORATORIES

AMPLE	CRO	CROP		YIELD SOIL AMENDMENTS		N	P ₂ O ₅	K ₂ 0	Mg	S	Zn	Mn	Fe	Cu	В		
ID	INTENDED	PREVIOUS	GOAL	LIME	LIME TONS/A 90 % ECCE	F-74 (40 X 20 X	ELEMENTAL SULFUR LBS/A	NITROGEN	PHOSPHATE	POTASH	MAGNESIUM	SULFUR	ZINC	MANGANESE	IRON	COPPER	BORON
280085	ALFALFA - ton BARLEY FEED - bu	ALFALFA - ton ALFALFA - ton						70	75 45	180 40	555. 555.	14 12	0.7 0.7	2.8 2.5	155 150	155 155	1.2

PK Fertilization of Established Alfalfa Chesterfield Irrigation District 2012 Pre Bloom Alfalfa Plant Tissue

Treatment	N (%)	P (%)	K (%)	S (%)	Zn (ug/g)	Mn (ug/g)	B (ug/g)
Control	4.4	0.34	2.3	0.33	37	24	31
P Band	4.2	0.32	1.8	0.29	29	19☆	25 🌣
P Broadcast	\wedge	0.32			27	19%	25 🏠
PK Band	3.6	0.28	1.9	0.23	₹ 30	32	16 💢
PK Broadcast	4.4	0.32	2.0	0.31	27	21	28 🌣
K Band	4.3	0.34	2.5	0.33	34	22	32
Alfalfa	2.5	0.25	2.0	0.25	20	25	30
Threshold		4.4	X 6.25	= 27.5%	6 Protein	_/A	AA_

Samples collected June 15, 2012

Irrigation Crop Diversification Corporation

Chesterfield June 1 Alfalfa Plant Tissue Sample

Cu

Date Received 07-Jun-12

Plant Sample ID 106165

Crop Alfalfa

Variety

Test Package PM1

Appearance Healthy

Plant Part Whole Plant (aboveground)

Date Sampled 01-Jun-12 Growth Stage **Vegetative**

Fe

Mn

Zn

B

PLANT NUTRIENT LEVELS

NUTRIENT RECOMMENDATION RATES (lb actual/ac)

Nutrient	N	P_2O_5	$K_{2}O$	S	Ca	Mg	Cu	Fe	Mn	Zn	В
									0.15 - 0.45		

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Treatment	Nutrient Applied (lb/ac)	Blend Analysis	Rate of Fertilizer (lb/ac)	2011 1 st Cut Hay Yield (ton/ac)	2012 1 st Cut Hay Yield (ton/ac)
Control	None	None	None	2.49 ton/ac	2.91 ton/ac
P Broadcast	16-75-0-0	11-52-0	144 lb/ac	3.48 ton/ac	2.58 ton/ac
P Band	16-75-0-0	11-52-0	144 lb/ac	3.29 ton/ac	2.71 ton/ac
K Band	16-0-75-0	10-0-47-0	160 lb/ac	3.40 ton/ac	2.10 ton/ac
PK Broadcast	16-75-75-0	6-28-28-0	270 lb/ac	3.08 ton/ac	2.75 ton/ac
PK Band	16-75-75-0	6-28-28-0	270 lb/ac	3.33 ton/ac	3.03 ton/ac

PK Fertilization of Established Alfalfa Chesterfield Irrigation District 2012 1st Cut Yields

- Broadcast P vs Band P
 2.58 ton/ac
 2.71 ton/ac
- Broadcast PK vs Band PK
 2.75 ton/ac
 3.03 ton/ac
- Banding benefit of 0.25 ton/ac

Manganese

- Symptoms occurred on sandy loam soil with high pH (8.1)
- High pH enhanced in 2012 by above average rainfall
- Low soil test at Miry Creek and Chesterfield
- Low Mn plant tissue test at Chesterfield

Soil pH and Nutrient Availability

http://www.extension.org/pages/9875/soil-ph-and-nutrient-availability

Manganese

- Manganese deficiency
 - root rot noted when symptoms were visible
 - damage to alfalfa plant density already done
 - contributed to stand decline in alfalfa
 - yellowing symptoms self corrected when rains stopped and soils dried out
 - one possible mechanism for decline of alfalfa as stands age

Liebig's Law of the Minimum

- The yield potential of a crop is like a barrel with staves (nutrients) of unequal length.
- The capacity of the barrel is limited by the length of the shortest stave and can only be increased by lengthening that stave.
- When that stave is lengthened, another stave becomes the limiting factor.

http://www.microsoil.com/liebigs_law_of_the_minimum.htm

Soil Analysis - Plot 13 at Miry Creek Fall 2010

													NEUT	RAL AMM	ONIUM A	ETAT	E (EXC	IANGEA	ABLE)				an ann an ann an an an an an an an an an					
G1 - 40 - 40 00 6	SAMPL TIFICA	N7123 34 54 54 6 / 1		GANIC				PHO	SPHO	RUS		POT	POTASSIUM MAGNESIUM			JM	CALCIUM SODIUM		М	pH		CATIC EXCHAI CAPAC	NGE	SE SATURATION		ON D)		
		L.O.I. WEAK BRAY STRONG BRAY 1:7 PERCENT RATE ppm RATE ppm RATE ppm				W	BONATI P SEN RATE		K n RA	re pp	Mg		Ca ppm RAT		a Na RATE ppm RAT		pH INDEX				% K	% Mg	% Ca	% % H N a				
						M	322	2 H	100	61 VI	1 4	1476	Н	183	1 8	1,5		32.8	В	2.5	27.0	68.1	2.4					
						Janes Hamilton					\sum							TPA Ex	traction							_		
		- 11	1	NITRA	TE-N	(FIA)					SUL	FUR		INC	MAN		ESE	100	RON	1750.000	PPER	10,000,000	RON	10000000	ESS		SOLU SAL	
	Surface	е		Sub	1	\neg		Sub 2		Total	10/			Zn		Mn			Fe		Cu		В	25,352	ME		1:1	1
ppm	lbs/A	depth	ppm	lbs/A	de		ppm	lbs/A	depth IN	lbs/A	ppm	RATE	ppm	RATE	ppm	R	ATE	ppm	RATE	ppm	RATE	ppm	RATE			4,600,000	nhos/ cm	RATE
17	31	0-6			T					31	12	L	1.0	L	2		VL	15	M	2.3	VH	1.9	VH		М		0.6	L

SOIL FERTILITY RECOMMEN DATIONS (POUNDS PER ACRE)

MPLE	CROP		YIELD		SOIL A	MENDM	ENT	N	N P ₂ O ₅ ROGEN PHOSPHATE		Mg	SULFUR	Zn	MN MANGANESE	IRON	COPPER	BORO
ID	INTENDED	PREVIOUS	GOAL	LIME	LIME TONS/A 90 % ECCE		ELEMENTAL SULFUR LBS/A	NITROGEN	PHOSPHATE	POTASH	WAGNEGIOW	OULI OIL					
30081	ALFALFA - ton WHEAT SPRING -bu	UNKNOWN	3 50				20 20	 85	40 25	 10	-	9 5	1.8		-	-	

Demonstration Layout on Plot 13 at Miry Creek

Fertilizer Banded November 6, 2010 West Control

12-15 in. H20 =

50-75 lb S/ac/yr

100 lb P₂O₅

Annual Alfalfa

Removal = 30 lb S/ac

120 lb K₂O

100 lb P_2O_5 + 120 lb K_2O + 4 lb Zn

100 lb $P_2O_5 + 120$ lb K_2O

East Control

Miry Creek 2012 2-cut Alfalfa Yield (ton/ac)

Miry Creek 2012 Plant Tissue and Yield Results

Treatment	Cost (\$/ac)	N (%)	P (%)	K (%)	Mn (%)	Zn (%)	Yield (ton/ac)	Relative Yield
P100K120	\$130	4.25	0.37	2.4	32	20	3.87	1.07
P100K120Zn4	\$155	4.36	0.38	2.3	34	28	4.08	1.13
P100	\$70	4.26	0.35	2.2	34	21	3.68	1.02
K120	\$60	3.45	0.32	2.3	29	24	3.56	0.99
Control		4.20	0.37	2.3	35	25	3.61	
Adequate		4.00	0.25	2.0	25	20		

Soil Sample suggested P, K, S, Mn, and Zn required – Only P, K, and Zn applied

Plant Tissue suggested P, K, S, Mn were adequate for first cut

Irrigated Annual Forage Cereal Demo@ Val Marie

Crop	Green Feed Yield (t/ac)
Barley – CDC Cowboy	2.16
Oats – Pinnacle	2.06
Spring Rye - Gazelle	1.71
Spring Triticale (awnless) - Tyndal	1.50

Stand Termination Tillage Strategies

- Objectives
 - 1) Reduce tillage passes required to prepare field for sowing back to alfalfa
 - 2) Improve water infiltration during irrigation

Locations

Val Marie – Lynn Grant

Rush Lake – Darren Steinley

Miry Creek – Bob Stuart

Irrigation Crop Diversification Corporation

Stand Termination Tillage Strategies Moisture Conservation

Treatment	Depth (cm)	Val Marie	Miry Creek
		Available Water (mm)	Available Water (mm)
CTS Tilled	0-30 cm	53	47
	30-60 cm	43	63
	60-90 cm	26	71
	Total	122	181
No Till	0-30 cm	53	44
	30-60 cm	49	50
	60-90 cm	50	53
	Total	152	147
		(-30) for Tilled	(+34) for Tilled

Stand Termination Tillage Strategies

Location	Treatment	Spring Stored Moisture (mm)	Green Feed Yield (ton/ac)
Val Marie	Unworked	153	2.47
	Worked 7 inches deep	122	2.50
	Worked 10 inches deep		2.77
Miry Creek	Unworked	147	2.56
	Worked 7 inches deep	181	2.46

2012 Learnings

- Determine presence of hardpan within soil profile to indicate potential for benefit
- More effective during dry falls
- Moisture needed for following year to restore moisture for crop production
- Will effect persist for several years?
- Fuel cost high for process
- Iron (hardware) cost significant

Liquid and Granular Phosphate

P Soil Test - Conventional 50 lb P₂O₅ for 100 bu - PRS Membrane 20 lb P₂O₅ for 64 bu

Treatment	% P in Plant Tissue	Canola Yield (bu/ac)
No Granular, No Liquid	0.54	33.5
No Granular, 13 l/ac Liquid	0.47	33.9
No Granular, 22 l/ac Liquid	0.63	33.9
20 P ₂ O ₅ /ac, No Liquid	0.73	33.1
20 P ₂ O ₅ /ac, 13 l/ac Liquid	0.76	20.4* *Waterlogging
20 P ₂ O ₅ /ac, 22 l/ac Liquid	0.61	33.4

on Terminated Alfalfa Stubble

- High rates of N release under good moisture conditions
- Two varieties Triactor and CDC Haymaker
- N rates 0, 25, 50, 75, 100 and 125 kg/ha
- Seeding date May 31, 2012

N rate for Irrigated Oats on Terminated Alfalfa Stubble

Oat Variety	Grain Yield (bu/ac)	Forage Yield (t/ac)
Triactor	114.8	6.23
CDC Haymaker	120.2	6.04

N rate (kg/ha)	Grain Yield (bu/ac)	Forage Yield (t/ac)
0 N	126.7 a	5.48
25 N	120.7 ab	6.47
50 N	121.9 ab	6.03
75 N	113.6 bc	6.40
100 N	113.9 bc	6.35
125 N	108.3 c	6.08
LSD (0.05)	11.1	NS

Sulphur

- Rain leaches S in sandy loam soil
- Roots of annuals need to reach deeper soil to access sufficient S
- Suspected for alfalfa at Consul, Miry Creek and Chesterfield based on soil test and based on plant tissue in 2011 at Chesterfield

http://landresources.montana.edu/soilfertility/sdeficiency.html

P, K, B, & S Fertilization

Treatment	Product Applied (lb/ac)	N (lb/ac)	P ₂ 0 ₅ (lb/ac)	K ₂ 0 (lb/ac)	S (lb/ac)	Yield (ton/ac)
P Broadcast	17-34-0 @ 173 lb/ac	29	75	0	0	2.37
PK Broadcast	10-25-25-0 @ 298 lb/ac	29	75	75	0	2.69
PKS Broadcast	9-23-22-4 @ 332 lb/ac	29	75	75	15	2.48
PS Broadcast	14-36-0-7 @ 207 lb/ac	29	75	0	15	2.76

P, K, B, & S Fertilization

Plant Tissue Analysis - Consul

Treatment	N (%)	P (%)	K (%)	S (%)	Cu (ppm)	Fe (ppm)	Mn (ppm)	Zn (ppm)	B (ppm)
P Broadcast	4.0	0.33	2.7	0.34	8	99	40	31	37
PK Broadcast	4.0	0.34	2.9	0.38	9	92	35	32	46
PKS Broadcast	4.2	0.35	3.0	0.34	9	67	31	32	42
PS Broadcast	4.2	0.32	2.9	0.36	9	68	30	32	43
Threshold	4.5	0.25	2.0	0.30	8	50	20	20	30

Conclusion

- Saline soil reduces crop growth but waterlogging is another constraint
- Soil and plant tissue testing are important tools for managing forage production
- The obvious solution is often not the complete solution. All growth factors need to be considered to provide the best solution!!

Acknowledgement

- ADOPT Agricultural Demonstration of Practices and Technology
- Crop Production Services Outlook
 - blending services
 - G-Mac's Ag Team Leader and Eatonia
 - fertilizer application
- Cargill AgHorizons Rosetown supplies
- Salford Farm Machinery Ltd.- tillage
- Nexus Ag Cu and Zn fertilizer
- United Agri Products Mn fertilizer

Our Cooperators

- Greg Oldhaver Cabri
- Russ Swihart Consul
- Scott Sanderson Consul
- Larry Verpy Eastend
- Andy Perrault Ponteix
- Pat Hayes Val Marie

Zinc

- Zinc band has deeper green color
- Important for land leveled or eroded soils
- Need to address P, K and S status before considering zinc
- Band application more effective than broadcast
- 4 lb/ac treatment likely adequate for life

Sulphur

http://www.channel.com/Agronomics/Pages/Consider-Alfalfas-Heavy-Fertilizer-Use.aspx

- Affected plants are lime green on newer growth
- S does not translocate well within the plant
- Patchy symptoms due to sulphate distribution at depth
- Easily corrected with broadcast application of 20 lb/ac sulphate in

blend

Irrigation Crop Diversification Corporation

Manganese

- Soil applications effective for only one year in high pH soils.
- Correction of Mn chlorosis very rapid with foliar applications (1 hour)
- Will set up project in 2013 with Mn to verify yield response
- Observed 0.4 ton/ac alfalfa in New Jersey

Potassium

- Soil supply depleted by high forage uptake and limited nutrient return to soil (hay removal)
- Observed at Chesterfield in 2012
- Monitor plant tissue K

Source: enst.umd.edu

Phosphorus

- Deficient plants are stunted
- Leaves are small and bluish green (dark)
- Thin and weedy stands
- May be yellowish in color similar to N or S deficiency

 http://www.agf.gov.bc.ca/cropp rot/alfalfadis.htm

General Fertilization Prescription for Forages

- Alfalfa Broadcast P@50-75 lb P₂0₅/ac/yr in fall or spring
- Grass Broadcast N@100 lb N/ac/yr in fall or spring
 - Problems with this approach
 - Variable yield response
 - Adjustment needed for previous year's nutrient removal
 - Focus needed on balanced nutrient supply
 - Soil has a memory!!!

Considerations

- Soil has a memory
 - Cropping history
 - Grazing pressure
 - Erosion events
 - Land leveling
 - Manure and fertilizer applications

- Yield goal
- Soil texture
- Soil pH
- Soil salinity
- Soil density

Tools to help

- Soil testing
- Plant tissue analysis (feed testing)

Conclusion

- Forages need more than P to produce optimum forage yield
- Soil testing and plant tissue analysis are powerful tools to lead you to the answers for your fields

Irrigation Crop Diversification Corporation

Irrigation Crop Diversification Corporation