Are Your Irrigated Fields Looking for Zinc?

Irrigation Agronomy Workshop
April 9, 2013
Outlook, SK

Gary Kruger PAg CCA

Zinc deficient regions

Soil Conditions for Zn Deficiency

- 1) Acid sandy soil low in total Zn
- 2) Neutral or basic calcareous soils
- 3) High fine clay and silt soils
- 4) High available P soils
- 5) Certain organic soils
- 6) Sub soils exposed by land leveling or wind and water erosion

Tisdale, Nelson and Beaton Soil Fertility and Fertilizers, 1985

Induced Zinc Deficiency

- Interaction with other nutrients
 - P zinc deficiency impairs root regulation of P uptake
 - building up soil P levels in soils with marginal
 Zn levels -> corrected by zinc application
 - High P suppresses michorrhizal uptake of Zn and Cu.
 - High N can increase requirement for Zn

Effect of Soil Temperature

- Increase in soil temperature raises Zn supply
 - Increased diffusion rate from soil colloids to plant roots
 - Increased mineralization from organic matter

Crop Sensitivity to Zn Deficiency

Very Sensitive	Mildly Sensitive	Insensitive
Bean	Alfalfa	Asparagus
Corn	Barley	Carrot
Flax	Potato	Mustard
Soybean	Wheat	Oat
Onion	Clover	Pea
	Tomato	Rye

Function of Zinc in Plants

- Component in enzyme systems of plant
 - Energy capture in glucose, protein synthesis, growth regulation,
 - Immobile in plants symptoms appear on new growth
 - N metabolism of plant role in synthesis of amino acids
 - Delayed maturity with deficiency

Zn Deficiency Symptoms

- Yellowing in a broad band on one or both sides of the leaf
- Stunting and shortening of the internodes
- Smaller leaves
- Symptoms are similar to Group 2 herbicide injury in pulses

Deficiency Symptoms Occur With

- Cold wet spring
 - Reduced root growth, slowed diffusion, slowed release of zinc from organic matter by microbes
- Fine textured soils
- Topsoil removed (loss of organic matter)
 - Calcium carbonate on soil surface
 - Elevated soil pH

Likely Zn Response

- Previous crop high Zn demand depleted available soil pool
 - Corn, barley
- High rates of fertilizer phosphorus application
- Absence of manure application

Zinc Deficiency in Alfalfa

- Zinc deficiency in alfalfa extremely rare
 - Mycorrhizal associations increase uptake of diffusion supplied nutrients
 - P, K, Zn, Mn, Fe,

Zinc Deficiency in Barley

Photo credit: IPNI

Zn Deficiency in Bean

- Yellowing of lower leaves
- Yellowing turns to bronze or brown as season progresses
- Potential confusion with sunburned leaves

Photo credit: Bean leaves showing chlorosis and browning due to a deficiency of zinc.

Howard F. Schwartz, Colorado State University

Zinc Deficiency in Corn

Photo credit: IPNI

Zinc Deficiency in Flax

Photo credit: IPNI

Zn Deficiency in Potato

- 1) Stunting
- Brown spots on stems and petioles
- 3) Leaf malformation
- 4) Young leaves roll up "fern leaf" upward and cupping
- 5) Thick, brittle, and puckered leaves
- 6) Older leaves have greybrown area and bronzing along margins

Photo credit: http://www.yara.us/agriculture/crops/potato/crop-nutrition/deficiencies/zn/zinc-deficiency-potatoes-8772/

Zn Deficiency in Soybean

Photo credit: IPNI

Zn Deficiency in Tomato

Photo credit: http://5e.plantphys.net/article.php?ch=3&id=289

Zinc Deficiency in Wheat

Government
—— of ——
Saskatchewan

Liebig's Law of the Minimum

- The yield potential of a crop is like a barrel with staves (nutrients) of unequal length.
- The capacity of the barrel is limited by the length of the shortest stave and can only be increased by lengthening that stave.
- When that stave is lengthened, another stave becomes the limiting factor.

Source: http://www.microsoil.com/liebigs_law_of_the_minimum.htm

Soil Testing for Zinc

DTPA extraction (lb Zn/ac)

Crop	Deficient	Marginal	Adequate
Bean	0 - 2.0	2.0 - 3.0	3.0 - 15.0
Potatoes	0 - 1.0	1.0 - 1.5	1.5 - 15.0
Corn	0 - 1.0	1.0 - 1.5	1.5 - 15.0
Cereals	0 - 0.5	0.5 - 1.0	1.0 - 15.0
Grass	0 - 0.5	0.5 - 1.0	1.0 - 15.0
Other crops	0 - 0.75	0.75 – 1.25	1.25 – 15.0

Source: ALS Laboratories

Plant Tissue Analysis for Zinc¹

Crop	Plant Part	Adequate Above
Alfalfa	Top 15 cm of shoot prior to flowering	20 ppm
Barley	Whole plant at boot	15 ppm
Canola	Whole plant prior to flowering	15 ppm
Faba bean	Recent fully developed leaves at early flower	15 ppm
Field pea	Recent fully developed trifoliate leaves at early flower	25 ppm
Potato	3 rd to 5 th leaf blade and petiole at bud stage	15 ppm
Wheat	Whole plant at boot	15 ppm

¹Nitric Acid and Hydrogen Peroxide Digest with ICP Scan

Management of Zn Deficiency

- Use soil testing and plant tissue analysis to evaluate unusual observations
- Keep on the lookout for signs of hidden hunger in your fields
- Test strategies with Zn strips in your fields to evaluate your ideas and conclusions

Correction of Zn Deficiency

- 2 ¼ actual lb Zn as granular blended in seedplaced or broadcast phosphate blend
- 2-3 granules per linear foot with 12" row spacing for 8 lb/ac of 36% ZnSO₄ fertilizer
- Fertilizer absorbed into plant shoots and roots and spread in plant residues
- Fertilizer impregnation with liquid Zn fertilizer
 - better distribution in soil

Correction of Zn Deficiency

- Zinc is adsorbed to soil colloids and is not prone to leaching or loss other than erosion and crop removal
- Common fungicides may provide adequate zinc to soils to correct a deficiency.
- One time application of 4 lb/ac Zn may be adequate for 10-20 years.

Conclusion

- Zinc deficiency is most common on calcareous, high pH, eroded or land leveled soils
- Although zinc is fairly costly to apply, with the appropriate application method, it will provide returns on a responsive field for many years.

