







## Fertilization - What does the potato crop need?

# Nutrient uptake and removal by crops (lb/ac)

| Crop         | Yield      |     | Uptake   |                  |    |  | Removal |          |                  |    |  |
|--------------|------------|-----|----------|------------------|----|--|---------|----------|------------------|----|--|
|              |            | N   | $P_2O_5$ | K <sub>2</sub> O | S  |  | N       | $P_2O_5$ | K <sub>2</sub> O | S  |  |
| Potato       | 15 ton/ac  | 171 | 50       | 223              | 14 |  | 96      | 27       | 162              | 9  |  |
| Canola       | 60 bu/ac   | 191 | 88       | 139              | 33 |  | 116     | 63       | 31               | 19 |  |
| Wheat (cwrs) | 75 bu/ac   | 158 | 60       | 136              | 17 |  | 113     | 44       | 33               | 8  |  |
| Alfalfa      | 4.5 ton/ac |     |          |                  |    |  | 261     | 62       | 270              | 27 |  |

- High potassium need and removal
- Calcium and magnesium need also higher than for wheat/canola
- Low sensitivity to deficiencies of most micronutrients (except high to manganese and moderate to zinc)

2

# Fertilization - What does you soil have to offer?

#### Irrigated soils in SK are generally:

#### Sufficient to high in:

- Potassium K (with exceptions) . . .
- Sulfur S (possible exceptions)
- Calcium Ca
- Magnesium Mg
- Micronutrients Cu, Fe, Zn, Mn (?), B (by potato standards)

#### Deficient in:

- Nitrogen N . . .
- Phosphorus P . . .



© Seed pieces are large (so provide nutrients)



Irrigation – maintains good conditions for nutrient uptake
 important for P, K, and some micros



Potatoes are slow starters – period of maximum demand later & extended

Nitrogen Uptake in Irrigated Potato as Affected by N Rate (Carberry)



Rooting depth less than most other field crops





FIGURE 3. Rooting depth as a function of P-Days.

© Aggressive/frequent tillage



#### ⊕ Potatoes are a high-value crop



## Potassium - K

Possible responses where:

History of high K removal (esp. alfalfa)

| Crop         | Yield      |     | Uptake                        |                  |    |   | Removal |                               |                  |    |  |
|--------------|------------|-----|-------------------------------|------------------|----|---|---------|-------------------------------|------------------|----|--|
|              |            | N   | P <sub>2</sub> O <sub>5</sub> | K <sub>2</sub> O | S  |   | N       | P <sub>2</sub> O <sub>5</sub> | K <sub>2</sub> O | S  |  |
| Potato       | 15 ton/ac  | 171 | 50                            | 223              | 14 | ! | 96      | 27                            | 162              | 9  |  |
| Canola       | 60 bu/ac   | 191 | 88                            | 139              | 33 | 1 | 116     | 63                            | 31               | 19 |  |
| Wheat (cwrs) | 75 bu/ac   | 158 | 60                            | 136              | 17 | 1 | 113     | 44                            | 33               | 8  |  |
| Alfalfa      | 4.5 ton/ac |     |                               |                  |    | 2 | 261     | 62                            | <u>270</u>       | 27 |  |

## Potassium - K

Possible responses where:
History of high K removal (alfalfa)
Soil *very* sandy
Soil eroded or graded





#### Potassium - K

The soil test for K works!

K recommended to ~300-400 lb/ac soil test K level (0-6")

Substantial response below ~250 lb/ac K test - application rates >100 lb/ac K<sub>2</sub>O





Labs often recommend K for potatoes at high soil test levels

K fertilizer (esp. KCl – 0-0-60) at substantial rates often reduces tuber specific gravity (dry matter content)

#### Phosphorus - P

P deficiency is more *the norm*, but unlikely where:

- History of high P fertilization
- History of manure application





P response less predictable, except at very low or high P test levels

Need high P<sub>2</sub>O<sub>5</sub> rates at low test levels (e.g. eroded/graded areas)

At least *replacement* P<sub>2</sub>O<sub>5</sub> rates (~30 lb/ac) recommended to moderately high test levels.

Low rates should be banded if possible.



Typically need 100-150 lb/ac N; except less when:

- following legume (esp. alfalfa)
- soil test high

Need ~8-10 lb of N per ton of tuber yield (soil test + fertilizer; soil nitrate-N to 24" depth)









#### Splitting of N preferred

- at hilling
- fertigation?

#### Effect of Timing of N Fertilizer Application on Marketable Yield (>3 oz)



#### N Placement and Source

In-hill banding



Controlled/slow-release N sources may have a fit. (coatings; urease and nitrification inhibitors)



Petiole test can be helpful if unsure of sufficiency.







#### Nitrate Petiole Level

Sprinkler Irrigation - Demo 2005



Petiole test – a current work in progress.

#### Petiole Nitrate test levels in several N studies



Sampling Date (adjusted for planting date) - Day of the year

#### Negative effects of excess N:

- delayed development/maturity
- excess vines
- low tuber sg
- environment issues

(soil test!)





# Canada