Southwest Saskatchewan Irrigation Districts

2011 Field Projects

Gary Kruger PAg CCA Irrigation Agrologist

Program Overview

- Alfalfa Variety Demo at CSIDC saline soil
- Irrigation scheduling @ Herbert 3 fields
- Stand termination/tillage (3 sites)
- Soil Fertility Demo
 - PK Zn– cover crop forage yield (Miry Creek)
 - PK annual crop (Miry Creek)
 - PK alfalfa forage yield (Chesterfield)
 - P timing alfalfa (Consul)
 - PKS alfalfa (Consul)
 - Conventional vs PRS soil test (Eastend)
 - Poor production area investigation (Ponteix)

Salt Lab Alfalfa Variety Screening 2009

Top three out of nine varieties from salt lab trial with AJ Bluejay as a control

A - Rangelander

L3738 Keho

- L4039 SC Salt

Halo CW 34024

Bridgestew

CW 054038

CW 064027

- Rugged H - Bullseye

J - TS 4002

- Sown June 29, 2010 at 1.5 cm depth
 Two blocks of four varieties
 Plots of 1.5 m x 600 m
- Heavy weed pressure from redroot pigweed and shepherd's purse controlled with Cobotox in late July

Salt Tolerant Alfalfa Demo

Excellent emergence of alfalfa

Redroot pigweed and shepherd's purse abound

Site overview showing salinity classes

Nonsaline #4
Moderately saline #2,3,6,7,8
Severely saline #1 and #5

Transect	Mean E.C. (mS/cm)	Salinity Rating	Mean Regrowth on Aug 30 (cm)	2011 Yield (t/ac)
1	7.6	Moderate	47	5.64
2	6.6	Moderate	47	5.30
3	5.1	Moderate	48	4.28
4	1.7	Nonsaline	46	4.48
5	9.3	Severe	43	5.58
6	6.0	Moderate	49	5.40
7	6.4	Moderate	49	5.67
8	5.4	Moderate	47	5.47

Transect	Mean E.C. (mS/cm)	Range E.C. (mS/cm)	Outliers	Salinity Mean Rating Regrowth on Aug 30 (cm)		2011 Transect Average Yield (t/ac)
1	7.6	6.9-8.4	Two high	Moderate	47	5.64
2	6.6	5.4-7.3	None	Moderate	47	5.30
3	5.1	4.0-6.0	None	Moderate	48	4.28
4	1.7	1.0-2.6	None	Nonsaline	46	4.48
5	9.3	6.6-10.6	One low	Severe	43	5.58
6	6.0	4.8-7.6	None	Moderate	49	5.40
7	6.4	3.9-8.2	One low One high	Moderate	49	5.67
8	5.4	1.6-8.2	One low One high	Moderate	47	5.47

Variety	Plant Height Aug 30 (cm)	2011 Forage Yield (t/ac)
Halo	50	5.91
CW064027	56	5.44
AC Bluejay	43	5.05
Bridgeview	40	4.51

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Bill Coventry - Mantario

- Treatments
 - 1) Control
 - 2) P Broadcast
 - 3) P Band
 - 4) K Band
 - 5) PK Broadcast
 - 6) PK Band

PK Fertilization of Established Alfalfa Chesterfield Irrigation District - Soil Test Results

										-			NEUTRA	LAMMON	NUM ACET	ATE (EXCHAN	GEABL	.E)								
Grower ID				PHOR	US		POTASSIUM		MAGNESIUM		CALCIUM		ODIUM		рН		CATION EXCHANGE CAPACITY		ERCE SATU (COM	RATIO	NC					
					ED L.O.I	* AC.	P ₁ AK BRAY 1:7	P ₂ STROM BRAY 1:7	lG '	Cl	BONATE P .sen	7	K	74	Mg	Ca	_ n	Na m D ATE	рН	BUFF	5600	C.E.C.	% K	% Mg	. 15000	% % H Na
		Maria Maria		PARTY NAMED IN	NT RATE	z ppn	IKAIL	hhiii kv	41 E	ppm	RATE	The state of the s	RATE	Maria Santa	printer and the second	ppm RAT	-			_		meq/100g			_	The second
	2	280085		3.3	М	4	٧L	27	M	8	L	92	L	478	VH	2940 H	26	6	8.1			19.0	1.2	21.0	77.2	0.6
-																TPA EXTRA C	TION									4
				NITRAT	E-N (FIA)				SL	LFUR	ZII	ZINC MANGANESE IRON COPPER BORON				RON	EXCESS		SOL	JBLE					
	Surface	е		Sub 1			Sub 2		Total		S ICAP	Z	n		Mn	Fe		Cu	1		В	LIME RATE		SA 1	LTS :1	
ppm	lbs/A	depth IN	ppm	lbs/A	depth IN	ppm	lbs/A	depth IN	lbs/A	ppm	RATE	ppm	RATE	ppm	RATE	ppm R	ATE	ppm F	RATE	ppm	RAT		n	nmhos cm	/ RA	TE
6	11	0-6							11	10	L	1.7	М	3	VL	36	VH	1.1	М	0.6	L	L		0.3		
-		SC	OIL	FERT	ILITY	RE	COM	MEN	DAT	ION	S (PO	UND	S PE	R AC	RE) k	y MIDV	VES	ST LA	BOF	RATO	ORI	ES				

AMPLE	4 C1 WWW W D P D D D D D D D D D D D D D D D		YIELD		SOIL A	OIL AMENDMENTS		N	P ₂ O ₅	K ₂ 0	Mg	S	Zn	Mn	Fe	Cu	В
ID	INTENDED	PREVIOUS	GOAL	LIME LBS/A of CaCO ₃	LIME TONS/A 90 % ECCE	1970 CONTYCON SHORE 24	ELEMENTAL SULFUR LBS/A	NITROGEN	PHOSPHATE	POTASH	MAGNESIUM	SULFUR	ZINC	MANGANESE	IRON	COPPER	BORON
280085	ALFALFA - ton BARLEY FEED - bu	ALFALFA - ton ALFALFA - ton	soull'en					- 70	75 45	180 40	-	14 12	0.7 0.7	2.8 2.5	-	=	1.2

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Treatment	Nutrient Applied (lb/ac)	Blend Analysis	Rate of Fertilizer (lb/ac)	Hay Yield (ton/ac)		
Control	None	None	None	2.49 ton/ac		
P Broadcast	16-75-0-0	11-52-0	144 lb/ac	3.48 ton/ac		
P Band	16-75-0-0	11-52-0	144 lb/ac	3.29 ton/ac		
K Band	16-0-75-0	10-0-47-0	160 lb/ac	3.40 ton/ac		
PK Broadcast	16-75-75-0	6-28-28-0	270 lb/ac	3.08 ton/ac		
PK Band	16-75-75-0	6-28-28-0	270 lb/ac	3.33 ton/ac		

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Broadcast P
 3.28 t/ac

VS

Band P 3.31 t/ac

Broadcast PK
 3.08 t/ac

VS

Band PK 3.33 t/ac

Control2.49 t/ac

VS

Band K 3.40 t/ac

PK Fertilization of Established Alfalfa Chesterfield Irrigation District Plant Tissue Analysis

Treatment	N (%)	P (%)	K (%)	S (%)	Zn (ug/g)
Control	2.7	0.15	2.0	0.13	22
P Band	2.3	0.18	1.6★	0.09	16 🖈
K Band	3.0	0.14	2.1	0.14	24
Alfalfa	2.5	0.25	2.0	0.25	20
Grass	2.0	0.25	1.5	0.15	15

Saskatchewan Ministry of Agriculture

PK Fertilization of Established Alfalfa Chesterfield Irrigation District

Liebig's Law of the Minimum

Yield potential is like a barrel with staves of unequal length

Yield is limited by the length of the shortest stave

When that stave is lengthened, the next shortest stave becomes the limiting factor

Stand Termination Tillage Strategies

- Objectives
 - Reduce tillage passes required to prepare field for sowing back to alfalfa
 - 2) Improve water infiltration during irrigation

Saskatchewan Ministry of Agriculture

Stand Termination Tillage Strategies

- Challenges
 - 1) Clay texture

Sticky when wet

Crusting

Poor seedbed

Inadequate depth control

Difficult for seedlings to emerge

- 2) Alleopathy of alfalfa residues
- 3) Restricted water infiltration due to hardpan

Stand Termination Tillage Strategies

- Locations
 - Val Marie Lynn Grant
 - Rush Lake Darren Steinley
 - Miry Creek Bob Stuart

Fertilization of Cover Crop Miry Creek Irrigation District

Stealth alfalfa sown in spring 2011 with Morgan oats as cover crop 100 lb P₂0₅ banded

Control – no fertilizer

November 6, 2010

Saskatchewan Ministry of **Agriculture**

Conclusion

- Saline soil reduces crop growth but waterlogging is another constraint
- Soil and plant tissue testing are important tools for managing forage production
- The obvious solution is often not the complete solution. All growth factors need to be considered to provide the best solution!!

Acknowledgement

- Viterra fertilizer and blending services
 Swift Current, Shaunavon, Consul
- Crop Production Services blending services
 Outlook
- G-Mac's Ag Team Leader and Eatonia
 fertilizer application
- Cargill AgHorizons Rosetown supplies
- Salford Farm Machinery Ltd.- tillage
- Nexus Ag Cu and Zn micronutrient fertilizer
- ADOPT Agricultural Demonstration of Practices and Technology

Other Cooperators

- Greg Oldhaver Cabri
- Russ Swihart Consul
- Scott Sanderson Consul
- Ken Falk Herbert
- Larry Verpe Eastend
- Andy Perrault Ponteix

