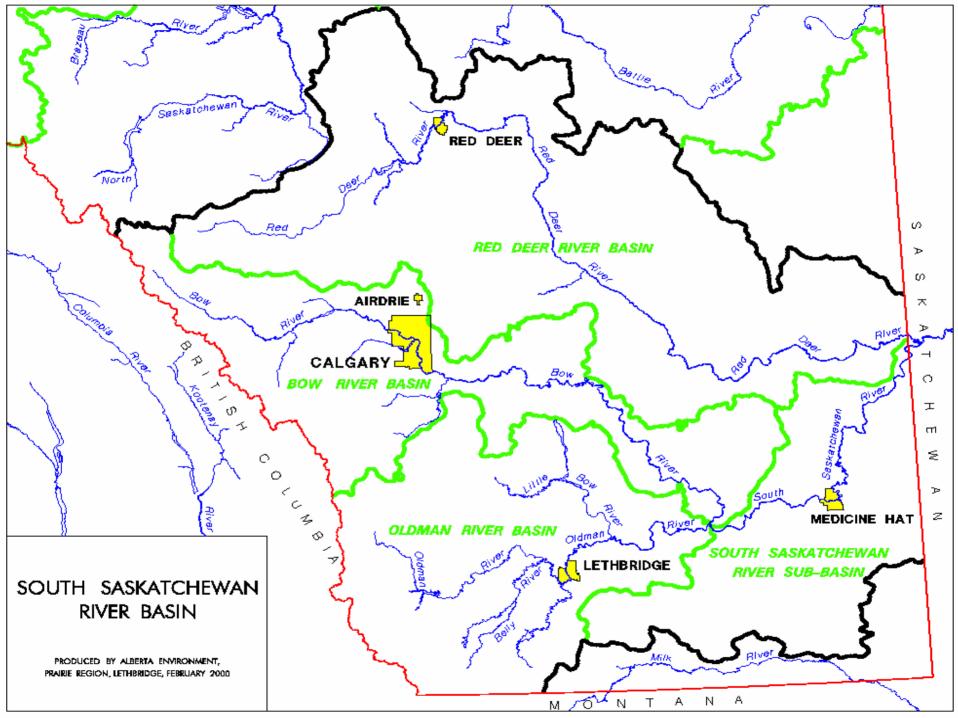
Irrigation Water Quality for Food Production: Alberta

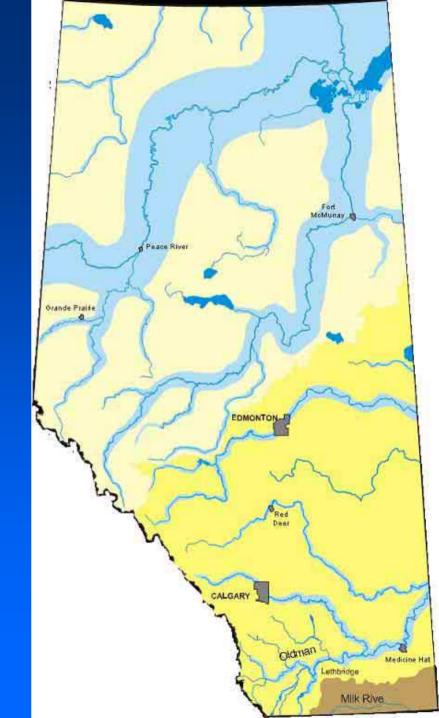
Rod Bennett and Andrea Kalischuk

Irrigation Branch
Alberta Agriculture, Food & Rural
Development
Lethbridge, Alberta

Sustainable Irrigation for the Prairies Workshop Saskatoon, Saskatchewan March 22 & 23, 2006


RURAL DEVELOPMENT

Irrigation in Alberta



Mean Annual Natural River Discharges (m³ x 10⁶)

> Total Inflow = $70 \ 277$ Total Outflow = $130 \ 788$

Based on available data to 2001.

Rocky Mountain Snow Pack

Mean Water Quality for Southern Alberta Rivers January 1990 to March 1990*

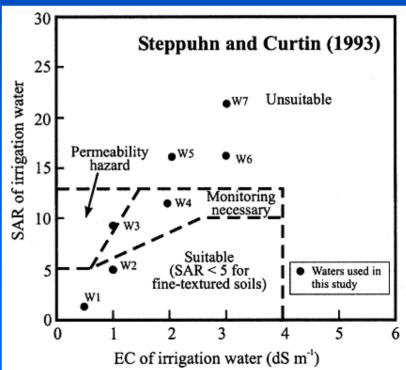
Sampling Site	EC (dS m ⁻¹)	TDS (mg L ⁻¹)	SAR
Bow River, Cochrane	0.32	173	80.0
Bow River, Carseland	0.37	212	0.31
Bow River, Ronalane	0.40	235	0.45
Oldman River, Lethbridge	0.37	215	0.48
S.Saskatchewan River, Medicine Hat	0.40	236	0.57

^{*} Alberta Environment (2000).

Mean Water Quality of Irrigation Reservoirs In the St. Mary River Irrigation Project April to November (1973 to 1977)*

Reservoir	EC (dS m ⁻¹)	SAR
Chin	0.39	0.38
Sauder	0.40	0.51
Taber	0.67	1.36
Seven Persons	0.52	0.95
Murray	0.50	0.80
Grassy Lake	0.51	0.78
Horsefly	0.80	2.22
Bullshead	0.52	0.95
Fincastle	0.50	0.88

^{*} D.N. Graveland (1978), Alberta Environment


Irrigation Water Quality Study (Buckland et al. 2002)

 To examine the effects of alternate applications of saline-sodic waters and simulated rain on soil salinization and sodication, and on selected soil physical properties after five soft wheat crops.

 To assess the irrigation suitability of salinesodic waters for the soil investigated.

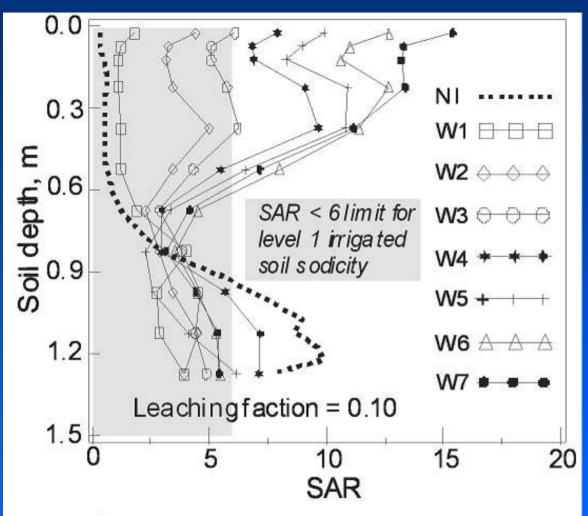


Fig. 5. SAR of saturated paste soil extract after five crops irrigated with W1 to W7 alternated with rain water compared to non-irrigated (NI) soil.

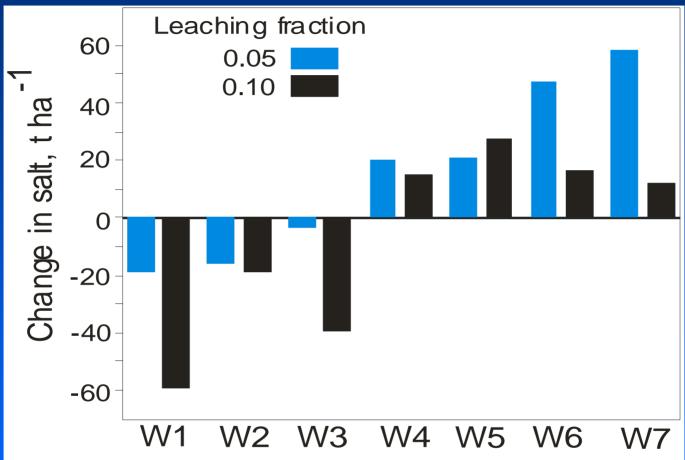


Fig. 6. Mean change in salt content of lysim eters (salt added by irrigation minus salt removed through drainage).

Conclusions:

- Waters considered 'safe' for supplemental irrigation of the Masinasin soil have EC less than or equal to 1 dS m⁻¹ and SAR less than or equal to 5.
- If EC values are greater than or equal to 2 dS m⁻¹ and/or SAR values are greater than or equal to 10, the water is considered unsuitable for irrigation of the Masinasin soil.
- Link to Alberta Irrigation District Water Quality Monitoring
 Map

Buckland et al. 2002

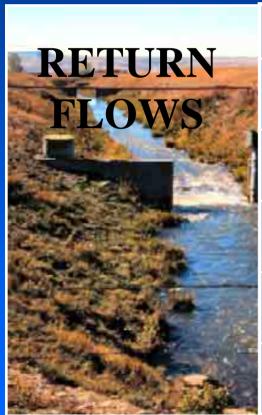
EC (dS m⁻¹)

SAR

SOURCE	BRID	0.38 🇸	0.60
FLOWS	LNID	0.32 🇸	0.50
	WID	0.32 🇸	0.24
	SMRID	0.34 🇸	0.50
	TID	0.33 🇸	0.56
	EID	0.29 🗸	0.26

Fecal Coliform Bacteria (100 counts/100 mL)

Livestock Water NO_2 -N+ NO_3 -N, mg L⁻¹

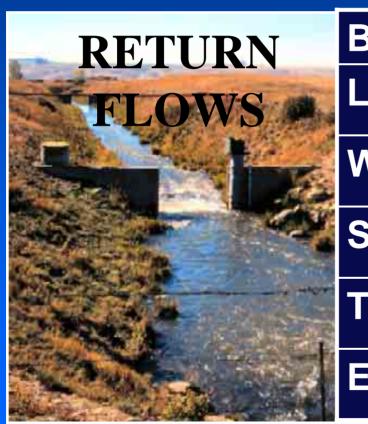

SOUR	CE
FLOW	S

BRID	12 J	0.004 🏒
LNID	20 🇸	0.006 🏒
WID	7 J	0.019 🏒
SMRID	18 J	0.019 🇸
TID	20 🗸	0.003 🏅
EID	44 /	0.428 🏒

Protection of Aquatic Life Total Phosphorus, mg L-1

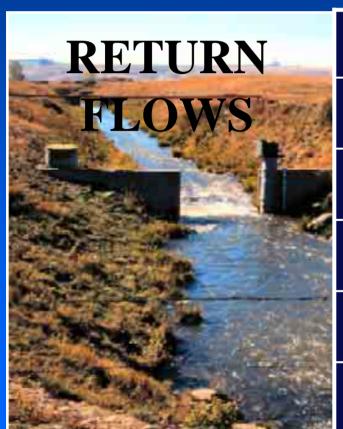
SOURCE	BRID	0.013 🏒
FLOWS	LNID	0.039 🏒
	WID	0.019 🏑
	SMRID	0.021 🇸
	TID	0.017 🏒
	EID	0.035

EC	SAR	TDS
(dS m ⁻¹)	OAIX	(mg L ⁻¹)



BRID	0.43	0.72 🏑	272 🥊
LNID	0.40	0.56	248
WID	0.50 🍆	1.16 /	325 🏑
SMRID	0.39 🏑	0.70 🇸	305 🇸
TID	0.34 🇸	0.50 🇸	233 🇸
EID	0.38 ✓	0.55 🗸	233 🗸

Fecal Coliform Bacteria (100 counts/100 mL)


RETURN	BRID	180	X
FLOWS	LNID	190	X
	WID	310	X
	SMRID	50	J
	TID	20	J
	EID	90	J

Livestock Water NO_2 -N+ NO_3 -N, mg L⁻¹

BRID	0.010 🏒
LNID	0.037
WID	0.010 🏒
SMRID	0.010 🏒
TID	0.029
EID	0.010

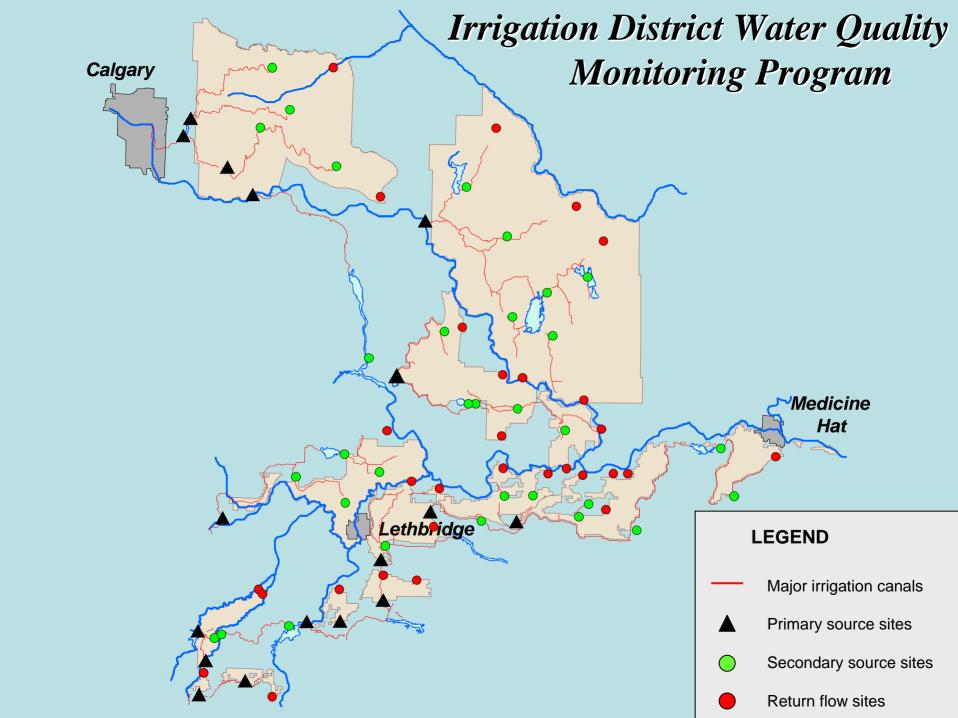
Protection of Aquatic Life Total Phosphorus, mg L-1

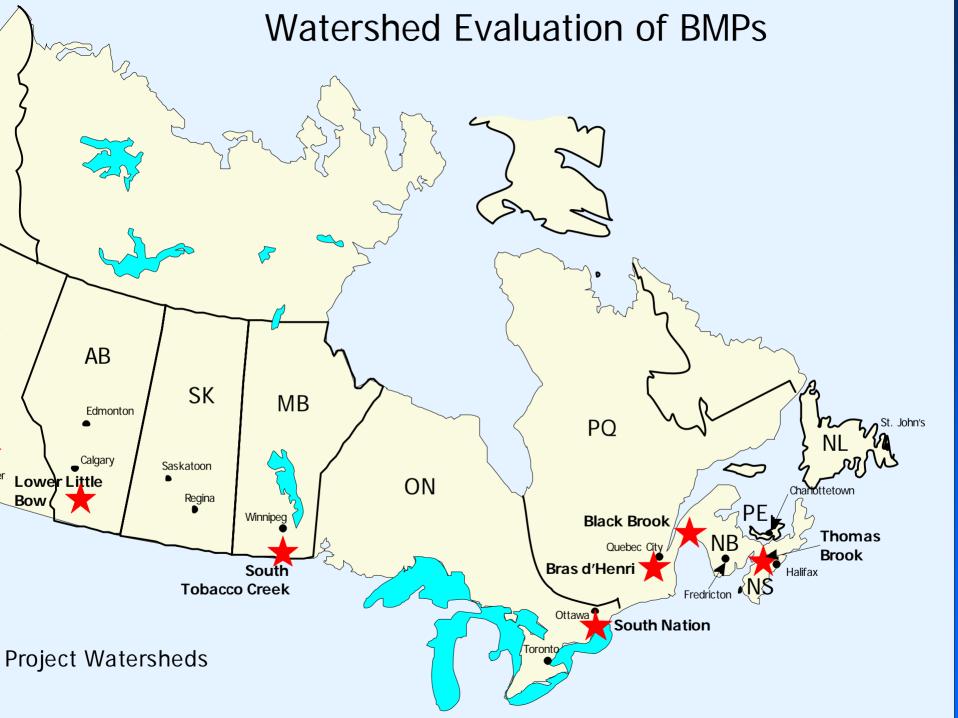
BRID	0.054	J
LNID	0.140	J
WID	0.102	J
SMRID	0.057	J
TID	0.098	J
EID	0.047	J

Pesticides Exceeding Water Quality Guidelines for:

District(s)	Year	# Pestidices Sampled	Frequency Sampled	Frequency of Detections	# Water Quality Violations
BRID, LNID, TID	1992	21 herbicides 3 insecticides 2 fungicides	2 or 3 (diversion and return)	1 trace bromoxynil (diversion) 1 trace dicamba (diversion) 1 trace 2,4-D (diversion) 7 2,4-D (return) 2 MCPA (return) 1 bromoxynil (return) 1 dichlofop-methyl (return) 1 dichlorprop (return)	2 MCPA (irrigation GL) 1 MCPA (aquatic GL) 1 dichlofopmethyl (irrigation GL)

Pesticides Exceeding Water Quality Guidelines for:


District(s)	Year	Frequency Sampled	Frequency of Detections	# Water Quality Violations		
SMRID	1995	60 (May to Sept)	87% 2,4-D 40% dicamba 43% MCPA 17% bromoxynil 17% triallate 8% diclofopmethyl 0% treflan 0% fenoxaprop	1 2,4-D (aquatic GL) 1 triallate (aquatic GL) 21 MCPA (irrigation GL)		
SMRID	1996	60 (May to Aug)	67% 2,4-D 15% dicamba 5% MCPA 3% bromoxynil 2% triallate 0% treflan 0% fenoxaprop	2 2,4-D (aquatic GL) 1 triallate (aquatic GL) 1 MCPA (irrigation GL) 1 bromoxynil (irrigation GL)		


Pesticides Exceeding Water Quality Guidelines for:

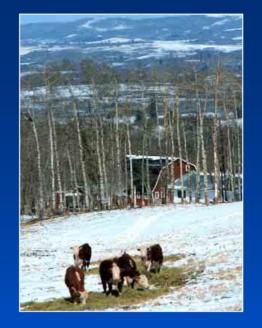
District(s)	Year	# Pesticides Sampled	Frequency Sampled	Frequency of Detections	# Water Quality Violations	
BRID	1995	8 herbicides	3 (June to mid July at 3 sites)	85% 2,4-D 50% MCPA 27% fenoxaprop 19% dicamba 19% bromoxynil 4% triallate 0% treflan 0% diclofop- methyl	1 triallate (aquatic GL) 4 bromoxynil (irrigation GL) 9 MCPA (irrigation GL)	
BRID- Crowfoot Crk	1996	31	weekly (May to mid July at 3 sites)	100% 2,4-D 92% mecoprop 79% dicamba 63% MCPA 12% triallate 8% atrazine	all dicamba (irrigation GL) 3 MCPA (irrigation GL)	

RETURN FLOWS

	Al	Со	Cu	Fe	Mn	Ni	Pb	Zn
BRID	0.1600	0.0005	0.0045	0.1600	0.0300	0.0020	0.0010	0.0065
LNID	0.6900		0.0045	1.0500		0.0111	0.0030	0.0375 J
WID	0.2835	0.0003	0.0050	0.1200	0.0500	0.0005	0.0010	0.0090
SMRID	0.0600		0.0030	0.1900	0.0220			0.0155 J
TID	1.2500		0.0039	0.2800		0.0031	0.0014	0.0170
EID	0.1000	0.0005	0.0050	0.3100	0.0340	0.0030	0.0010	0.0180

Agriculture's Impact

Livestock manure is considered to be the main agricultural contributor to water quality degradation.



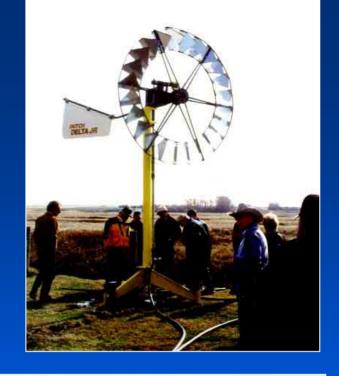
Runoff From Manured Fields

Livestock Management

Prevent runoff from over-wintering sites entering surface water bodies.

Wintering Site Improvements Diversion berm

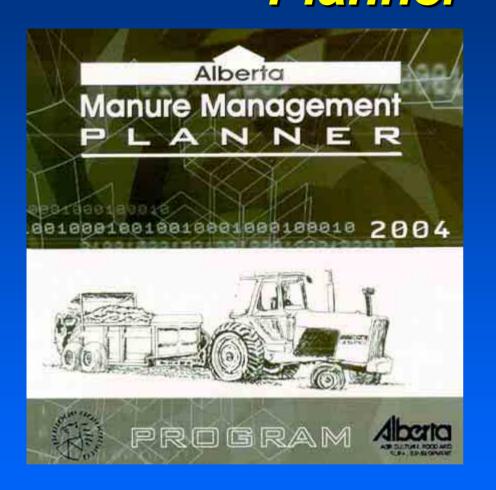
Riparian Pasture & Rotational Grazing



Specialized Cattle Crossings

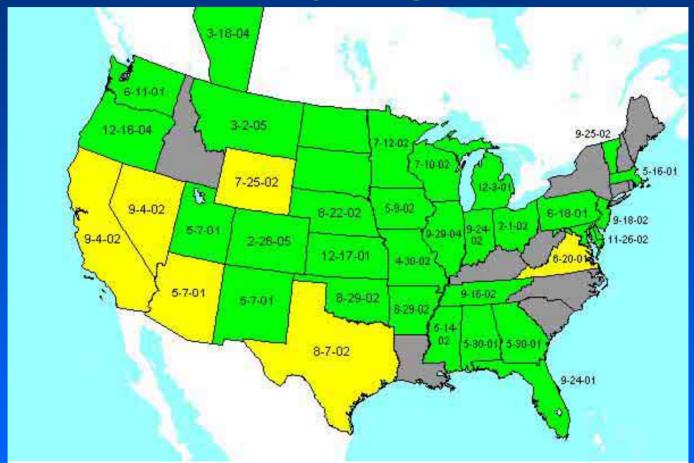
Off-Stream Watering

Buffering Waterways



Healthy riparian corridors

Manure Management Planner



Developed by Purdue University, MMP is a computer-based calculator, which has been customized for Alberta.

http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/epw8834

Manure Management Planner

Status of MMP development (as of March 2005)

- State or province supported by MMP (calculates fert recs, manure N availability, etc.)
- State under development collection of required state-specific data is underway.

Note: Date of most recent meeting between MMP developers and state NRCS/Extension staff is indicated on map.